A Laboratory Experiment to Demonstrate the Principles of Sedimentation in a Centrifuge: ESTIMATION OF RADIUS AND SETTLING VELOCITY OF BACTERIA

Erin M. Riley and P. Arthur Felse
Northwestern University • Evanston, IL 60208

Sedimentation refers to the movement of particles in a fluid under the influence of an external force. Centrifugation is a subset of sedimentation where particles or macromolecules move through a liquid under the influence of a centrifugal force. Centrifugation is a ubiquitous unit operation in biotechnology, food, mineral processing, and many other industries. The basic principle of centrifugation is used for rapid removal of cell particles from fermentation or cell culture media, removal of cell debris, and separation of protein precipitates. Commercial bioprocesses for the manufacture of penicillin, recombinant human insulin, monoclonal antibodies, therapeutic proteins, viral vaccines, bioethanol, and 1,3-propane diol use centrifugation for cell removal. Biological particles are relatively small (sub-micron to a few microns in diameter), and hence high rotational speeds are necessary for their separation. However, higher rotational speeds lead to greater shear stress. Particles separated using centrifugation in biotechnology are usually shear sensitive and hence require greater care during separation. Therefore, centrifuge operation in biotechnology is a tradeoff between separation efficiency and shear damage.

The laboratory exercise presented in this paper demonstrates the application of sedimentation principles to centrifugation, and allows students to contemplate the effect of shear on biological particles during centrifugation. The Escherichia coli (E. coli) cells suspended in Luria-Bertani (LB) medium were separated using a lab-scale batch centrifuge. This experiment provides an opportunity for students to develop experimen-

Learning outcomes from this experiment:
1. Understand the principles of centrifugation, and the shear effects of centrifugation on bacterial cells.
2. Operate a benchtop centrifuge, handle E. coli cells, and measure optical density of suspensions.
3. Perform calculations to estimate particle radius and settling time.
4. Critically examine and interpret results from centrifugation data.
5. Recombine conflicting conflicts in centrifugation data.
6. Exposure to effective team skills and electronic lab notebook technology.

LITERATURE REVIEW
Motion of particles in a centrifuge is influenced by particle diameter, particle density, liquid density, and liquid viscosity. Centrifugation can be used for the separation of solids from liquid, differential separation of immiscible liquids, and fractionation of macromolecules. Benchtop centrifuges, common in biotechnology laboratories, can reach accelerations up to 10,000g, while industrial tubular and disk centrifuges can reach accelerations of 61,000g and 14,000g, respectively. Ultracentrifuges used to separate macromolecules such as proteins and radioisotopes can reach accelerations up to 100,000g.

Laboratory-scale centrifuges typically operate in batch mode and are capable of processing submilliliter to about one liter of sample per batch. Industry-scale centrifuges operate in either semibatch or continuous modes and can handle capacities of several hundred liters per hour. Commercial applications of centrifugation include cell separation for bioprocessing, fat isolation in milk processing, blood plasma isolation in clinical laboratories, and DNA and RNA separation in biotechnology. Centrifugation also has applications in waste treatment for fine solids removal, and in mineral processing for ore separation. In all centrifugation equipment the underlying principle remains the same—solids are separated based on their density difference. Small-scale centrifugation experiments have been used in a classroom setting for extraction of juice from mash and for separation of biodiesel. However, literature reports do not focus on or demonstrate the principles of sedimentation.

THEORETICAL BACKGROUND AND EQUATIONS OF PARTICLE MOTION
Motion of particles through liquid during centrifugation is influenced by three forces: viz., centrifugal force acting downward, buoyancy and drag forces acting upward (Figure 1). The sum of these three forces will determine the net velocity of particles in a centrifuge. The particle will sink or settle if the downward force is more than the upward force, and the particle will float if the downward force is less than the upward force. Particles are assumed to be stationary and homogeneously suspended in the liquid before the application of centrifugal force. We used a centrifuge with a swing bucket rotor in this experiment. When the centrifuge is stationary, the centrifuge tubes are vertical, i.e., they are parallel to the axis of rotation. But when the centrifuge starts rotating, the tube holder and the centrifuge tube “swing” to a position that is perpendicular to the axis of rotation (Figure 2A, next page). The applied centrifugal force moves the particles away from the axis of rotation and towards the bottom of the tube. The effect of gravitational forces, which pull the particles down in the direction parallel to the axis of rotation, becomes negligible. Hence, particles move in a horizontal plane towards the bottom without many collisions with the centrifuge tube surface. However, collisions between particles might exist.

During operation of the centrifuge, after a brief acceleration period velocity of particles reaches a constant value, called the terminal velocity, vt. After the particle reaches vt, there is no acceleration, i.e., dv/dt = 0. A force balance can be applied to derive an expression for velocity of a particle moving through the liquid in a centrifuge. Applying the condition dv/dt = 0 to the force balance equation and further simplification results in an equation for terminal velocity given by Reference 5, i.e.,

\[\frac{dv}{dt} = 0 \]

\[\frac{dF}{dt} = 0 \]

\[\frac{dF}{dt} = 0 \]

Figure 1. Forces acting on a particle during centrifugation. F_e is the external force (either gravitational or centrifugal), F_b is the buoyant force, and F_d is the drag force.

Erin Riley graduated with a B.S. in microbiology and French honors performance from the University of Wisconsin-Madison. She spent 6 years researching· specializing in biotechnology, where her efforts have contributed greatly to several publications in journals such as Endocrinology and Journal of Biological Chemistry. She then joined the Master of Biotechnology program at Northwestern University where she ran the teaching lab. She is currently working at Catalent Pharmaceuticals in the Quality Control department. Arthur Felse is a lecturer in the Master of Biotechnology Program and in the Department of Chemical & Biological Engineering at Northwestern University. He is also the assistant director for research in the Master of Biotechnology Program. His research interests include engineering education, diversity in engineering, and biotech regulatory sciences. Arthur is actively involved in ASEE where he serves as the chemical engineering division program chair for the 2016 Annual Conference. He also served as a faculty in the 2012 CHE Summer School.
Eq. (1) can be used to estimate terminal velocity. This is the unhindered settling velocity.

In practice, *E. coli* particles settle under the influence of other *E. coli* particles. This is called hindered settling. For a uniform suspension, hindered settling velocity (v_{hs}) is given as:

$$v_{hs} = v_{t}(1-n^w)$$ \(\text{(5)}\)

where,

- v_{t} - hindered settling velocity, m/s
- n - volume fraction of particles, dimensionless
- w - exponent dependent on particle Reynolds number

Values of n can be determined from $Re = \frac{dR}{\mu} < 1.0$, (iv) particle motion due to upward motion of the liquid displaced by the solid; and (ii) redistribution of flow around a particle caused by the presence of other particles, subsequently affecting the drag coefficient. But for *E. coli* cells, convenient empirically developed v_{hs}/v_{t} data can be used. Linear interpolation of v_{hs}/v_{t} data is acceptable when estimating v_{hs}/v_{t} from v_{t} values. Estimation of volume fraction of cells is discussed in the Experimental Methods section, and linear interpolation of v_{hs}/v_{t} vs. φ data is discussed in the Results and Data Analysis section.

Estimation of hindered settling velocity is important in centrifuge operation to determine the time required for centrifugation when the centrifuge tube length is known or vice-versa. It is also useful in determining the relative position of particles in a centrifuge when it is used for fractional separation based on particle size and density differences. Terminal velocity values can be used to obtain quick estimates of particle radius using centrifugation data.

EQUIPMENT, SUPPLIES, AND PREPARATION OF REAGENTS

A benchtop centrifuge with a swing bucket rotor that can hold 15 mL centrifuge tubes was used in this experiment (Fisher Scientific AccuSpin 3R). Other required supplies are: 15 mL centrifuge tubes, *E. coli* cell suspension, Luria-Bertani (LB) media powder, 250-ml shaker flasks, autoclave, temperature-controlled shaker, spectrophotometer to measure absorbance at 600 nm, cuvettes for absorbance measurements, and pipette with capacity of 200 μL – 1 mL. LB media was prepared by adding 0.4 L of deionized water to 10.0 g of LB media powder and mixing it on a magnetic stirrer until a clear yellowish solution was obtained. LB media was then distributed into four 250 mL shake flasks, each containing 100 mL of LB media. The shake flasks with LB media were covered with aluminum foil and autoclaved at 121°C for 20 minutes to sterilize the contents. Cooled, sterile LB media was inoculated with 20μl of concentrated *E. coli* cell stock solution (OD₆₀₀ of approximately 0.75 units at a dilution 1:10) in a biological safety cabinet. Inoculated LB media was incubated in a shaker at 250 rpm and 37 ºC for about 16 hours (overnight). Our reference growth curve experiments have shown that *E. coli* cells were in stationary phase at 16 hours with OD₆₀₀ of approximately 1.6 ± 0.2 units measured against LB blank. We verified that the *E. coli* cell suspension used in centrifugation experiment had OD₆₀₀ within the range mentioned above after 16h of incubation.

LABORATORY DESCRIPTION

Parameters that need to be experimentally determined are the settling time and volume fraction of particles. Settling time will be substituted in Eq. (4) to determine the particle radius, which is then used in Eq. (1) to determine terminal velocity. Volume fraction of particles and terminal velocity are used in Eq. (5) to determine hindered settling velocity. The general work flow of this experiment is shown in Figure 3, next page.

Determination of settling time

Settling time is defined as the time required for particles to travel a certain distance in the fluid. In this experiment the particles were monitored as they traveled from the top of the fluid (which in this experiment was at the 12 mL mark in the graduated 15 mL centrifuge tube) to some point X (which in this experiment was at the 6 mL mark in the graduated 15 mL centrifuge tube). Figure 2B shows the location and distances of measurement points. Theoretically, settling is considered to be complete when all particles have crossed the 6 mL mark. Cells are assumed to exist as a homogenous suspension at the start of the experiment. Chronological steps in this experiment are:

- Pool and mix *E. coli* suspension from four shake flasks.
- Aliquot 12 mL of *E. coli* suspension each into 12 separate 15 mL centrifuge tubes. Set aside two tubes for particle volume fraction estimation.
- Load the centrifuge with the remaining 10 aliquots and run it at the required speed (such as 1500 rpm). Pipette about 1 mL of sample every five minutes from point X without disturbing the liquid. Measure the optical density of samples taken from point X at 600 nm (OD₆₀₀) using fresh Luria Bertani medium as blank. OD₆₀₀ values give an indirect measurement of *E. coli* cell concentration in the sample.
- Return the sample to the tube from which it was taken. Do not reuse this tube for further measurements, but keep the centrifuge balanced.
- Continue centrifugation and sampling until OD₆₀₀ at point X reaches a constant value, at which point complete settling has been achieved. The time at which complete settling happens is called settling time t. It is good practice to narrow the time intervals for sampling as the particles get closer to complete settling, which can be predicted

Figure 2. Illustration of particle motion in a centrifuge with swing bucket rotor. (A) particle motion in a centrifuge at rest, and (B) particle motion in a centrifuge during rotation.
by plotting OD_{600} vs. time and following the curve as it begins to level off. Use this t value in Eq. (4) to estimate particle radius.

• Repeat the experiment at different centrifuge speeds to check for consistency in particle radius estimations. Use the particle radius value in Eq. (1) to estimate terminal settling velocity.

Determination of particle volume fraction

Centrifuge 12 mL of E. coli suspension at 3000 rpm for 20 minutes to sediment the cells. Remove all supernatant by careful pipetting without disturbing the cell sediment. Measure the volume of supernatant that was removed (V_{sup}). The volume fraction of cells is given by

\[\varphi = \frac{(12 - V_{sup})}{12} \]

(6)

Use this value of \(\varphi \) to determine \(n \) and then use \(v \) and \(n \) in Eq. (5) to estimate hindered settling velocity, or use the convenient \(v / v_{n} \) vs. \(\varphi \) data available for E. coli cells.(8)

RESULTS AND DATA ANALYSIS

Goals of the centrifugation experiment are to determine: (i) the radius of E. coli particles; and (ii) unhindered and hindered settling velocities of E. coli particles. This experiment was done by two different teams each week, and each team did the experiment at two different centrifugation speeds. Students teams were required to propose a written, step-by-step protocol to accomplish the goals of this experiment. The protocol should include: (i) data that needs to be collected; (ii) templates to record and tabulate data; (iii) time at which OD_{600} begins to level off. Use this t value in Eq. (4) to estimate terminal settling time. The protocol should also include the assumptions inherent in the equations, possibilities for error, and the approximations necessary to do the calculations. The instructor or the teaching assistant reviewed student team protocols, and interactively worked with them to improve it. The intent of this exercise is to nudge students to learn more about the experiment in advance and to challenge them to apply their theoretical knowledge to the centrifugation experiment. There was a grade penalty for coming to the lab without the protocol but the protocol itself was not graded. Protocol writing was an opportunity for students to learn through interaction and iteration. The protocol review typically took about 30 minutes.

Each student team performed the centrifugation experiment at two different pre-assigned rotational speeds. At each rotational speed, time vs. OD_{600} data (of samples taken from point X) was obtained. Initial optical density measurements were made at 5 minute intervals, followed by shorter intervals as the settling progressed. Example plots of time vs. OD_{600} profiles at different rotational speeds are given in Figure 4. The profiles are characterized by a rapid initial decrease in OD_{600} followed by a slow decrease and then a constant OD_{600}. At higher rotational speeds more than one plateau was observed (Figure 4C&D). The time at which the OD_{600} begins to remain constant is the settling time for E. coli cells. This value of settling time was determined through experimentation and calculations for this example V_{hs} was experimentally determined to be 11.6 mL, and using this value in Eq. (6), \(\varphi \) was estimated to be 0.033. Values for V_{hs} were determined based on linear interpolation of \(v / v_{n} \) vs. \(\varphi \) data available in the literature(8) and plotted in Figure 5 (next page). Parameter values determined through experimentation and calculations for this example are given in Table 1 (next page). Hands-on experimentation took 3-4 hours. Students teams generated the data and recorded it in their electronic lab notebook.
Student teams were asked to reconcile these cognitive conflicts in their lab reports. The first cognitive conflict can be explained through the effect of shear stress on E. coli cells. Higher centrifugation speeds lead to higher shear stress and subsequent cell breakage.21 Cells settle rapidly at higher rotational speeds and hence the plate is reached faster leading to shorter settling time. But immediately after reaching the plateau, due to higher shear stress cells start to break, and cell debris are re-suspended in solution, which consequently leads to an increase in OD600. Further centrifugation for a longer time period leads to settling of cell debris and hence OD600 starts to plateau again. In occasional cases with much higher rotation speeds (such as 3500 rpm, Figure 4D) multiple plateaus are observed, which indicates sequential breakage of cell debris into even smaller particles and subsequent settling. The first plateau is representative of whole cells and should be used for cell radius estimation. The second cognitive conflict can be explained by looking closely at the shape and dimensions of E. coli. Typical E. coli cells are cylindrical particles with approximate diameter and height of 1μm and 2μm respectively, i.e., an H/D ratio of 2.0. Sphericity of a particle with H/D ratio of 2.0 is 0.833. Thus the E. coli particles when moving in a liquid might behave geometrically close to a sphere. Therefore, the value of E. coli radius estimated by this experiment matches with reported values. The third cognitive conflict is again related to shear effects. At higher rotational speeds, E. coli particles will disintegrate quickly resulting in a suspension that has a sub population of smaller-size particles. Since radius estimations represent an average value for the population, a sub population of smaller particles will result in underestimation of particle radius. Higher rotational speeds will lead to a larger sub population of smaller particles and subsequently a greater underestimation of particle radius. The predicted particle size will progressively decrease with increase in rotational speed.

COGNITIVE CONFLICT OF CENTRIFUGATION CONCEPTS TO STIMULATE LEARNING

Particle settling in a centrifuge is influenced by a multitude of parameters, and the equations derived to describe particle motion are inherent with a few assumptions. Therefore, the experimental results will contradict theoretical expectations in some cases. This cognitive conflict presents an opportunity for learning and critical thinking.

Cognitive conflict is known to promote learning by challenging preconceived notions.19,20 Data obtained in this experiment often contradicted common beliefs, thus providing students with an opportunity to think beyond the obvious. Three instances of cognitive conflict are presented by centrifugation data: (i) at higher rotational speeds more than one plateau is observed in the time vs. OD600 data, when in theory only one plateau should be observed; (ii) predicted values for cylindrical E. coli particles match with literature-reported values that were obtained through microscopic methods—how do the equations developed for spherical geometry correctly predict the radius of cylindrical particles?; and (iii) the predicted radius decreases with an increase in rotational speed, but particle radius is not a variable quantity. Literature-reported value for E. coli radius is about 0.5 μm.21

Student teams were asked to reconcile these cognitive conflicts in their lab reports. The first cognitive conflict can be explained through the effect of shear stress on E. coli cells. Higher centrifugation speeds lead to higher shear stress and subsequent cell breakage.21 Cells settle rapidly at higher rotational speeds and hence the plate is reached faster leading to shorter settling time. But immediately after reaching the plateau, due to higher shear stress cells start to break, and cell debris are re-suspended in solution, which consequently leads to an increase in OD600. Further centrifugation for a longer time period leads to settling of cell debris and hence OD600 starts to plateau again. In occasional cases with much higher rotation speeds (such as 3500 rpm, Figure 4D) multiple plateaus are observed, which indicates sequential breakage of cell debris into even smaller particles and subsequent settling. The first plateau is representative of whole cells and should be used for cell radius estimation. The second cognitive conflict can be explained by looking closely at the shape and dimensions of E. coli. Typical E. coli cells are cylindrical particles with approximate diameter and height of 1μm and 2μm respectively, i.e., an H/D ratio of 2.0. Sphericity of a particle with H/D ratio of 2.0 is 0.833. Thus the E. coli particles when moving in a liquid might behave geometrically close to a sphere. Therefore, the value of E. coli radius estimated by this experiment matches with reported values. The third cognitive conflict is again related to shear effects. At higher rotational speeds, E. coli particles will disintegrate quickly resulting in a suspension that has a sub population of smaller-size particles. Since radius estimations represent an average value for the population, a sub population of smaller particles will result in underestimation of particle radius. Higher rotational speeds will lead to a larger sub population of smaller particles and subsequently a greater underestimation of particle radius. The predicted particle size will progressively decrease with increase in rotational speed.

TEAMWORK AND DATA REPORTING EXPERIENCES

The centrifugation laboratory experiment was done by two different three-member student teams each week. Students were divided into teams based on Myers-Briggs Type Indica-

<table>
<thead>
<tr>
<th>Data for estimation of hindered settling velocity. Data are adapted from Reference 5. Trend line used for interpolation of vhs/vt vs. data is shown.</th>
</tr>
</thead>
</table>

![Figure 5. v_f, v_s vs. data for estimation of hindered settling velocity. Data are adapted from Reference 5. Trend line used for interpolation of v_f, v_s vs. data is shown.](image-url)

<table>
<thead>
<tr>
<th>Table 1 Parameter values obtained from the centrifugation experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_r</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>1500</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>3500</td>
</tr>
</tbody>
</table>

* Average literature reported radius of E. coli cells ~ 0.5 x 10^{-6} m*

Overall rating of student satisfaction with team experiences. Average score = 5.4/6, n = 31. Rating scale: 6 - Very satisfied, 5 - Satisfied, 4 - Somewhat Satisfied, 3 - Somewhat Dissatisfied, 2 - Dissatisfied, 1 - Very Dissatisfied.

![Figure 6. Overall rating of student satisfaction with team experiences. Average score = 5.4/6, n = 31. Rating scale: 6 - Very satisfied, 5 - Satisfied, 4 - Somewhat Satisfied, 3 - Somewhat Dissatisfied, 2 - Dissatisfied, 1 - Very Dissatisfied.](image-url)

Table 2 Phrase frequency analysis of student responses to the question: “Please explain your overall rating of team experiences.”

<table>
<thead>
<tr>
<th>Phrase*</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worked very well together</td>
<td>3</td>
</tr>
<tr>
<td>Satisfied with my team</td>
<td>2</td>
</tr>
<tr>
<td>Learned a lot</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 3 Phrase frequency analysis of student responses to the question: “Suggested one or more changes that will make your team experience better.”

<table>
<thead>
<tr>
<th>Phrase*</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Better communication among team members</td>
<td>1</td>
</tr>
<tr>
<td>Emphasis of individual responsibilities</td>
<td>2</td>
</tr>
<tr>
<td>More team coaching</td>
<td>3</td>
</tr>
</tbody>
</table>

* Analysis based on phrase frequency count through:

 - Phrases with similar themes are merged together for ranking

Overall, how satisfied are you with your team experiences?

Data from student feedback survey indicate a high level of satisfaction with team experiences (Figure 6). The level of satisfaction varied between “very satisfied,” “satisfied,” and “somewhat satisfied.” No one expressed dissatisfaction with their team experiences. The average satisfaction score was 5.4/6. To better understand the numerical scores students were asked to provide a freestyle explanation of their score. We processed the explanations through a web-based, open source phrase frequency counter, which returned a ranked listing of most frequent phrases from student responses (<http://www.wordwritings.org.uk/phrase_count.aspx>). The survey question was “Please explain your overall rating of team experiences.” We set the filter to identify frequency of four-letter phrases, which returned most discernible phrases. Results of the frequency count given in Table 2 indicate that student teams worked very well together, and that students learned a lot from team coaching. Next we asked the students to “Suggest one or more changes that will make your team experience better.” Processing student responses to this question through a frequency counter did not generate any discernible phrase. Hence, we manually analyzed the responses and ranked thematic phrases, the results of which are presented in Table 3. It is clear that students would like to have better communication within teams, and a greater emphasis on shared responsibilities among team members. These two themes are interconnected. Insufficient communication often led to a situation where team members were unclear of their responsibilities in completing the experiment. In the future, we plan to provide students with additional training and tools for better team communication, and coaching specific to team leaders on assigning responsibilities and establishing channels of communication with and among all team members.

Students entered raw data in LabArchives, an electronic lab notebook (ELN). They were required to complete the ELN before exiting the lab, and if needed were allowed until...
end-of-day to finish entering data. Teaching assistants and instructor had access to student ELNs, which were assessed based on completeness and clarity of data presentation. ELNs allowed students to share data with other teams through the click of a button without the need to share paper lab notebook copies. It was crucial for the teams to share data immediately with the other team that did the centrifugation experiment for comparative data analysis. Student teams had six days to share the data, compare and analyze the data, and write a comparative lab report. ELNs are increasingly used in the industry and academia and in this lab students were exposed to the nuances of ELN. From an instructor’s perspective, ELN allows for real-time monitoring of experiments and to track history of data entry and changes that were made. The use of ELN allowed us to maintain superior data integrity of the centrifugation experiment.

Overall, the centrifugation experiment simulated the entire life-cycle of a scientific study, which included translating theory to designing an experiment (protocol writing), learning experimental skills, data reporting, data analysis, teamwork, and reconciling cognitive conflicts between experimental observations and theoretical expectations. Students were able to satisfy all the expectations, and qualitative feedback indicates that they enjoyed learning this experiment.

SAFETY CONSIDERATIONS

Ingredients in LB media are considered to be non-hazardous according to OSHA standards. Solid LB media is a fine powder that can result in dust during handling. Use of impervious protective wear (such as labcoats), eye protection (safety goggles), and skin protection (gloves) is recommended when handling LB media. Use of respiratory protection when handling large amounts of LB media powder is highly recommended.

E. coli cells used in this experiment are a class I biohazard and should be handled aseptically in a biological safety cabinet or around a flame. Lab coats, safety goggles, and gloves should be used when handling E. coli cells. Thermal gloves should be used during heat sterilization of media. All spent E. coli suspension should be decontaminated with 20% sodium hypochlorite (bleach) or should be autoclaved before disposal. Any container or supplies that come in contact with E. coli should be considered as a biohazard waste and disposed accordingly.

Centrifuges operate at high rotational speed, but moving components are typically contained in a closed unit. Follow safety guidelines provided in the centrifuge operating manual.

CONCLUSIONS

We have developed a simple centrifugation experiment to demonstrate the principles of sedimentation, and to estimate particle radius and settling velocities. This experiment is also an opportunity to examine the effect of shear stress and the non-spherical geometry of E. coli particles during centrifugation. Students learned experimental techniques such as operating a benchtop centrifuge, measuring optical density, estimating settling time, measuring volume fraction of particles, and handling of E. coli cells. Following data collection, they learned to perform calculations to estimate particle radius as well as hindered and unhindered settling velocities. Students also had the opportunity to critically analyze the data, reconcile cognitive conflicts, and reflect on interpretations that are non-obvious. Students were also exposed to team skills and use of the electronic lab notebook. The centrifugation experiment is straightforward, cost-effective, and can be completed in 3-4 hours. E. coli cells were used in this experiment to fit with the general subject of the Bioprocess Engineering lab course. E. coli particles can be readily replaced with other suspension such as polymeric microspheres or fine sand to fit with the subject matter of other lab courses. This centrifugation experiment is adaptable to many lab courses in chemical and biochemical engineering.

REFERENCES