For major corporations, a portfolio of internal research and development balanced by external engagement with academia provides a competitive advantage. One method by which this is accomplished is through internships offered to Ph.D. graduate students. The intern directly addresses research questions related to a current manufacturing process or ongoing development program through the completion of a collaborative project while he/she gains a background in industrial research that, with successful recruiting, can be leveraged to solve future challenges for the company. At the same time, the academic institution strengthens its ties with the corporation, opening the opportunity for further interactions with the school and its research groups. Typically, an internship may be within the student’s field, but not the student’s expertise or thesis. In such a circumstance, while the student may learn about a different area, the internship would not contribute to his/her thesis. A better option is for the assigned project to be within the scope of the student’s thesis, as in the internship described in this work.

In this particular case, the internship came about as the result of an ongoing collaboration to study trickle bed reactor hydrodynamics between Dr. Arvind Varma’s research group at Purdue University and the Reaction Engineering group at Dow, a part of Engineering and Process Sciences (E&PS) in Core R&D. The work completed during this collaboration comprises the graduate student’s Ph.D. thesis on trickle bed hydrodynamics, with a focus on the effect of catalyst support properties. Prior to beginning the internship, the student had evaluated the effect of catalyst support particle size distribution on the hydrodynamics under trickling flow. While gaining insight into hydrodynamics at the lab scale provides useful information, for results to be relevant to industry, it is important to understand to what degree hydrodynamics vary with vessel scale.
Trickle bed reactors are used throughout industry for hydodesulfurization, hydrogenation, and selective oxidation reactions and are characterized by cocurrent downflow of gas and liquid reactants through a packed bed of catalyst.[2] The multiphase flow results in hydrodynamics that impact reactor performance.[3] Therefore, understanding how the hydrodynamics change as a function of different bed and operating variables, and determining how these interactions vary with vessel scale, can increase economic profit. In the trickle flow regime, hydrodynamics are described by the parameters of liquid holdup and pressure drop, which are impacted by changes in gas, liquid, and bed properties. The effect of these variables may be evaluated at room temperature and pressure with air and water as fluids and with no reaction. Generally, observations are expected to be independent of scale if the ratio of vessel to particle diameter is greater than 20, which would indicate the absence of wall effects. However, prior results internal to Dow had shown a decrease in pressure drop with increase in vessel diameter, even though this criteria was satisfied. Therefore, the technical goal of the internship was to evaluate the effect of vessel diameter on the hydrodynamics under trickling flow for beds packed with activated carbon. Because the internship arose from an ongoing collaboration, the student had the opportunity to pursue work related directly to his thesis, which is mutually beneficial to the student and the company.

PRIOR EXPERIENCE GAINED ON CAMPUS

Beyond general exposure to the variety of reactor types within the graduate reaction engineering course, the primary learning the student brought to the internship came from practical aspects of the lab work and a deep understanding of the literature associated with the project. This included criteria regarding reactor sizing, methods for packing of catalyst in trickle beds, and knowledge of the pre-wetting methods necessary to achieve reproducible results.

PROJECT OVERSIGHT

During the course of the internship, the student was in regular communication with his direct supervisor, who set up initial orientation and training, checked on the student’s progress, and acted as liaison in meeting appropriate personnel. Additional project oversight came from weekly meetings with the student’s industry advisor, who was also serving on the student’s thesis committee and was the primary contact throughout the collaboration. Lastly, the student submitted an internal report at the end of the internship and presented his work to E&PS employees. While input was provided to the student in order to meet project goals, the overall effort was largely self-guided because of the familiarity the student already had with the project. Thus, the internship in this case provided a more realistic work experience where the student was responsible for the direction and completion of the project.

\textbf{Figure 1.} Diagram of the setup including (1) column, (2) air supply, (3) air flow control, (4) water flow control, (5) pump, and (6) liquid reservoir. The system is analogous for 1/2” and 6” ID vessels. Boxes with a “P” indicate pressure transducers.
REVIEW OF PREVIOUS WORK AT DOW AND PROJECT DEFINITION

Before starting the internship, while the issue regarding the effect of scale was known to the student, the details of the project and previous internal efforts were not provided due to intellectual property issues. Once at Dow, the intern had to determine the direction of the project by evaluating all of the available resources, including Dow proprietary material and personnel. The review of intellectual resources allowed the student to determine that the previous researchers used an inconsistent pre-wetting procedure for the activated carbon-packed bed in attaining the earlier results.

SAFETY REVIEW AND EXPERIMENTAL PROCEDURE

Concurrently with the problem review, the student worked with the lab technician to design and build the experimental setup and with network and communication services to set up the instrumentation. Relative to academic research, industry requires working with a greater number of other employees. While their expertise is available, competing priorities required development of soft skills by the intern. While project setup was ongoing, the student initiated the management of change (MOC) process. The MOC process guides the safety review for a project to ensure safe operation. Although the experiments used air and water, a thorough safety review was required because the setup was new. In general, safety practices, such as the MOC process, are more thorough in industry, where methods learned in the plant may be applied in the lab. Appropriate safety practices and review provide opportunity not only to make a project safer but also more effective. The safety practices learned in an industrial internship can be applied by the student in his or her research group and school.

The diagram of the resulting setup after the MOC and construction were completed is shown in Figure 1. Manual control valves controlled the air and water flow, and flow meters measured the flow rates. Air passed through the bed and was vented to the atmosphere, while water was recycled from a reservoir. Two columns were used, one with a 1/2” diameter and another with a 6” diameter. In the 6” column, water passed through a distributor while in the 1/2” column, water was introduced by a 1/4” tube in the center of the column. Columns were packed with 20-50 mesh Nuchar RGC activated carbon. The Sauter mean diameter of the particles was 620 μm. The void fraction was determined to be 0.370 ±0.006 for both columns, based on the envelope volume and mass of the particles added to the columns. The columns were clear acrylic to visually monitor flow regime, which is the contacting pattern of the gas and liquid flowing through the column. In this work, all data were gathered in the trickle flow regime, where gas is continuous, and liquid flows as a stable thin film over the particles.[6] Phenomenological models for trickle flow define a hydrodynamic state based on bed and fluid variables.[4,5] For a given state, a specific pressure drop and liquid holdup are defined. Experimental measurement of the pressure drop for a set of operating variables defines the hydrodynamic state. In this study, pressure drop was monitored by a differential pressure transducer mounted across a 24” section of the bed. Comparison of pressure drops will verify whether or not hydrodynamics are affected by vessel diameter.

With the setup in place, an appropriate pre-wetting procedure was developed. The activated carbon used in this study was not readily wetted by the water when flowing from top down both with and without air flowing. With the air flowing, the water did not uniformly wet the packed bed of particles. Without air flowing, the liquid would not penetrate the bed, instead flooding the area above it. To overcome this, a new pre-wetting procedure was developed (Figure 2). After flooding water above the bed with the outlet closed and the air line

Figure 2. The pre-wetting method developed for the activated carbon used in this study, where a slug of water (in dark gray) is forced through the column.
opened to vent, air was introduced to force the liquid slug through the bed, thereby uniformly wetting the particles. After this procedure, air was introduced at a fixed superficial velocity, and the liquid flow rate was increased until pulsing flow was observed. The liquid flow rate was then decreased until the trickling flow regime was reached, where data were then gathered with decreasing and increasing liquid flow rate.

TECHNICAL RESULTS

Experimental results comparing dimensionless pressure drop, ψ_L, between the 1⁄2" and 6" ID columns packed with the activated carbon are shown in Figures 3. For a given gas and

![Figures 3. Dimensionless pressure drop for the 1⁄2" (empty symbol) and 6" (filled symbol) columns with varying v_L for a fixed v_G: a) 310 mm/s, b) 220 mm/s, c) 110 mm/s, d) 60 mm/s, and e) 30 mm/s.](image)
The results attained demonstrate the significant benefits of aligning an internship with the student’s thesis. The company directly benefits by having an individual with the correct expertise solve a relevant problem. The student benefits by adding to his or her thesis work and gaining a well-grounded understanding of the practical motivation for his/her research. This is in contrast to the alternative where the internship is focused on a different topic. In the latter case, the gains made by both the company and the student will be less. Furthermore, the time spent away would not be in support of the student’s thesis. As such, he was able to apply the knowledge he already had regarding trickle bed hydrodynamics to solve a problem of industrial importance. The learning that resulted for industry and academia included the technical result itself and associated methods, while the student also learned about the work and safety culture in industry. More broadly, the stronger ties resulting from the collaboration may have a role in enhancing education at the school.

ACKNOWLEDGMENTS

The authors acknowledge The Dow Chemical Company for providing funding for this work. The authors also thank Billy Smith for his assistance on this project.

NOMENCLATURE

\(d_p\) particle diameter, m
\(d_R\) reactor column diameter, m
\(L\) bed length, m
\(g\) gravimetric constant, m/s²
\(v_L\) liquid superficial velocity, mm/s
\(v_g\) gas superficial velocity, mm/s
\(\Delta P\) pressure drop, Pa
\[\rho_L \text{ liquid density, kg/m}^3 \]

\[\psi_L \text{ dimensionless pressure drop } (\psi_L = \frac{-\Delta P}{\rho_L L_g} + 1) \]

REFERENCES

