THE GREEN SCALE IN SOUTH FLORIDA

John M. Fredrick

(Continued from Vol. XXVI, No. 1, p. 15)

Five different species of ants have been observed attending green scales for honeydew. Many different species of winged Diptera and Hymenoptera, which apparently are in search of honeydew, also may be noted on foliage infested with green scales.

NATURAL CONTROL

Control by Insects:

Control of the green scale by insect predators and parasites during the summer and fall months was observed to be practically nil and was considered of little importance.

The twice-stabbed ladybeetle, Chilocorus bivulnerus Muls., was seen eating four green scale adults and two other species of ladybeetles were sometimes observed on foliage infested with the scales. Several species of internal dipterous and/or hymenopterous parasites and a predaceous thrips were infrequently encountered during the examination of the green scales. At least two species of mites were often observed mingling with the green scale crawlers and eggs underneath the adult scales, but they did not appear to be harmful to them. Less than 3 percent of all green scales examined were killed by their insect enemies in the summer and fall months.
Control by Fungi:

Several different entomogenous fungi were found associated with the green scales, and some of them apparently played an important role in the natural limitation of the scales on citrus during certain seasons of the year. In their descending order of importance they were:

1. The white-fringed fungus—*Cephalosporium lecanii* Zimm.
2. A grayish blue entomogenous fungus.
3. Cuban aschersonia—*Aschersonia cubensis*.
4. Pink scale fungus—*Nectria diploa* B. & C. sp., perfect stage.
 Pseudomicrocera henningsii (Koorders) Petch, imperfect stage.
5. A secondary fungus, *Fusarium* sp., which might be confused with *C. lecanii*.

Of the various fungi under observation, *Cephalosporium lecanii* Zimm. was the most common and apparently caused the highest percentage of mortality. The next most common fungus, the grayish blue one, also appeared to be very efficient, but it was not nearly so widespread as the *C. lecanii*. Cuban aschersonia was observed in only one grove and there it was only of fractional value in destroying green scales.

The pink scale fungus was of no consequence on green scales. Approximately a dozen specimens of it were found in the thousands of scales examined.

This description of *Cephalosporium lecanii* Zimm. is quoted from a paper given by John Parkin in the Annals of the Royal Botanic Gardens: “The fungus shows itself to the naked eye as a white or pale yellow powdery bloom around and to some extent over the scales. The powdery or mealy appearance is due to innumerable conidial heads covering the hyphae.”

During the early summer months *C. lecanii* was not very plentiful but as the season progressed there was a marked increase in the fungus-infected scales on citrus trees. On June 29 only 2.8 percent of all the scales examined in an unsprayed plot in one grove were dead, and no *C. lecanii* was noted. On August 18, 50 days later, 61.2 percent of all the scales examined on the same plot were dead and 68.3 percent of the dead showed the mycelia of *C. lecanii*. The same trend of increased mortality coincident with an increased abundance of *C. lecanii* was observed in an unsprayed check plot in another grove.

Through October this fungus was more generally distributed over the trees and the total mortality had increased to 73 percent of the scales examined which indicated that *C. lecanii* was a factor in keeping the infestation in check. Fifty-five percent of all the scales examined at that time showed mycelia of the fungus.

C. lecanii was seldom found associated with green scales on groundsels. It is possible that the open-type growth of these plants does not permit humid conditions sufficiently favorable for the development of the fungus. The fact that *C. lecanii* did not affect green scales on groundsels to any extent may be the reason for the continued heavy infestations on those plants.

Due to the apparent efficiency of *C. lecanii* in limiting green scales on citrus, several attempts were made to artificially spread this fungus on green scales not infected with it on both citrus and groundsels. All attempts to inoculate apparently healthy scales were unsuccessful.

Although *C. lecanii* is a factor in checking green scale infestations, there are several reasons why artificial control may be desirable rather than depending wholly on the fungus to keep infestations in check. If the weather is not suitable for fungus development, the trees may not only become heavily infested with green scales but the leaves will also be coated with sooty mold which provides an excellent breeding place for purple and long scales. Dead green scales that have been killed by *C. lecanii* stick firmly to the leaves. This also affords shelter for purple and long scale crawlers. In short, there might be a satisfactory control of the scales by the fungus, but later an increase of purple and long scales might occur which would cause considerable damage. Consequently several experiments with oil sprays were carried out to determine the effectiveness of oil on the scales and how they might best be controlled.

ARTIFICIAL CONTROL

Control with Oil Sprays:

The green scale was found to be no more difficult to kill than the average scale of the same type. As in all other species of scale insects the crawler and intermediates were found to be the most susceptible to an oil spray and the adults were the most resistant. Citrus and Groundsels were the host plants used in the experimental work.

Concentrations of from 1.0 to 1.7 percent actual oil were tested for their effectiveness on green scales. One application of
1.5 percent oil resulted in satisfactory control, killing on an average 91.2 percent of the scales. The control obtained in plots that received 1.6 and 1.7 percent oil was somewhat better, but there was insufficient difference between the results obtained with the 1.5 percent oil and the two higher concentrations to warrant using either of the latter. Concentrations lower than 1.5 percent, namely, 1.0, 1.12, and 1.33 percent oil, killed a high percentage of the intermediates and crawlers but did not kill a sufficiently high percentage of the adults to consider these lower concentrations as efficient one-application sprays on citrus.

Other experiments were conducted to determine the effectiveness of one application and two applications, respectively, of low concentration oil sprays so that they might be used on tender ornamentals. Six plots sprayed with 1.0 percent oil gave on an average 85.4 percent mortality. A second application of 1.0 percent oil made on the respective plots from 6 to 42 days after the first spray resulted in a reduction of living scales to 3.3 percent which is considered satisfactory control. In one plot, prior to an oil spray, the stages of the scales were found to be in the following proportionate percentages: 10 percent adults, 30 percent crawlers, and 60 percent intermediates. Three days after the spray was applied counts showed that of the small percentage of scales remaining, 29 percent were adults, 65 percent were crawlers, and 6 percent were intermediates. The proportionate percentage of increase of crawlers was due to the fact that, in weaker oil concentrations, the adults that were not killed continued to deposit eggs. This accounts for the high percentage of crawlers in the postspray count.

In one series of plots where a satisfactory control did not result from the 1.5 percent oil, a second application of 1.0 percent oil reduced the population to the minimum. In one of these plots only 70 percent control was obtained from a 1.5 percent oil. A second application of 1.0 percent oil made 10 days after the first spray killed all but 2 percent.

Results of a count made from leaves picked at random from 6 plots after the second application of a 1.0 percent oil showed a population of .1 living scale per leaf which demonstrated that the population was reduced to a minimum. Since all of the second applications were made within a period of 6 weeks after the first spray, none of the progeny of the females which survived the first spray had time to mature. Probably the most satisfactory results from two applications may be obtained if the second
spray is applied from 4 to 5 weeks after the first spray. All females surviving the first spray will be given time to complete oviposition so that all the young hatched may be killed by the second application of oil.

The citrus trees in all plots were in good healthy condition and there was no noticeable injury on citrus from any of the concentration sprays even where the percentage of oil was as high as 1.7. No burn resulted from any of the oil timing sprays even when the 1.5 percent oil was followed in 7 days with 1.0 percent oil. Although no injury resulted from the oil timing sprays, the second application should be applied only in case of emergency.

Prevention:

Indications are that green scales may leave groundseis to infest adjacent citrus trees if these plants occur around or near a grove. On the west end of one grove where groundseis were the most abundant and where the heaviest infestations of scales occurred on them, citrus trees were correspondingly infested. As the number of heavily infested groundseis decreased, there was also a decrease in the number of infested citrus trees, and where there were fewer groundseis with no infestations, the citrus trees were apparently also free of scale.

With this in mind the possibility of a grove becoming infested may be reduced by destroying all groundseis around or near citrus groves, especially those bordering young citrus plantings.

ACKNOWLEDGMENTS

The writer is indebted an deeply grateful to Mr. W. L. Thompson of the Citrus Experiment Station, Lake Alfred, for his having planned and supervised the experimental control work and for his advice in the writing of this report. Acknowledgment and thanks are due Mr. G. B. Merrill of the Fla. State Plant Board for his assistance in the preliminary work and for the identifications and measurements of the scales. Appreciation is expressed to Mr. Frank Stirling of Davie for his having kindly furnished a laboratory building for the work at Davie.

Sincere thanks are due Dr. A. F. Camp in charge of the Citrus Experiment Station for having improvised the spray outfit that was used, Mr. Friedman West of the Florida Agricultural Experiment Station for his having identified hosts plants and fungi, Mr. M. R. Smith of the Bureau of Entomology and Plant Quarantine for the identification of two species of ants, Dr. R. K. Voorhees of the Citrus Experiment Station for criticisms and suggestions in the manuscript regarding the entomogenous fungi, and to the many others who, although not mentioned here, cooperated fully in facilitating the work.