ASPECTS OF THE BIOLOGY OF STELOPOLYBIA AREATA (SAY) (HYMENOPTERA: VESPIDAE)—(Prepublished Abstract) The nest of Stelopolybia areata (Say) differs from the known nests of congeners in that it is built in exposed sites and has a covering envelope. Mature nests are ovoid, 40-45 cm long by 32-34 cm diam, with the entrance at the bottom. The 8-9 combs appear at first glance to be concentric spheres, but are actually arranged into a continuous, three-dimensional spiral. The cells of the outermost comb, directly beneath the envelope, are covered by the workers with carton, forming closed air spaces. Mature nests contain approximately 100,000 cells. The 3 types of cell initiation used by S. areata (petiolate, lateral, sessile) are defined. Construction begins with a patch of sessile cells built on the supporting branch. This structure is expanded into a freely hanging semicylindrical comb. One edge of the lower portion of this comb is expanded laterally, overlapping the other edge and forming the beginning of the spiral. New petiolate combs are formed on top of the initial comb, and are expanded laterally and downward to fuse with the growing spiral below. Estimated adult populations of 4 nests ranged from 6,000 to 8,500, with from 5.5 to 12.2% queens. Queens are significantly larger than the workers and differ from them in color and in the shape of the first abdominal tergite. No males were found. Nests collected in southern Veracruz in January contained adult populations but no brood. Oviposition begins in February. Distribution of meconia suggests that nests are reused during a second season and possibly during a third. (Biotropica, 1973, 5(3):183-198; R. L. Jeanne, Boston Univ., Boston, Mass. 02215).

THE ROLE OF FOOD PLANTS IN THE SURVIVAL AND DEVELOPMENT OF CHORTOCETES TERMINIFERA (WALKER) UNDER DROUGHT CONDITIONS—(Prepublished Abstract) Field and laboratory observations on C. terminifera at Trangie, N.S.W., during drought conditions showed that none of the commoner plants in the habitat was entirely acceptable as food. Only suboptimal meals were taken with the result that development was slow, survival was poor, and the survivors were of small size. It is concluded that lack of food may be a major factor inducing mortality in the more arid parts of the insect's range, death resulting from lack of water rather than nutritional deficiencies. (Aust. J. Zool., 1973, 21(4):575-92; E. A. Bernays and R. F. Chapman, Centre for Overseas Pest Research, London W8, England).