
*Tribulus cistoides* occurs in the Bahamas as isolated plants or in small dense patches along road sides and in vacant lots and is generally regarded as an attractive ornamental rather than as a weed of importance. No consideration has been given to biological control and hence no deliberate introductions of natural enemies has been considered. When examining isolated plants near the Nassau Beach Hotel, New Providence, Bahamas, 1 July 1980, we did not expect to find *M. lypriformis*. However, virtually every internode of the older stems bore circular emergence holes made by the adults as they emerged from their pupation sites. We encountered and collected all stages in the more recent growth indicating that the weevil is well established.

This discovery of *M. lypriformis* (identification confirmed by H. Burke, Texas A & M, College Station, TX) is not too surprising considering its unaided appearance in Florida (Stegmaier, C. E. 1973. Fla. Ent. 56: 235-41) and in Jamaica and Mexico (Bennett, F. D. 1979. Proc. VII Reunion Nacional de Control Biologico, Mexico: 137-41). While its exact method of dispersal to the Bahamas is unknown the frequent interceptions of this highly specific weevil on non-host plants by USDA plant quarantine inspectors on the Mexican border suggest that movement of agricultural produce through normal channels and/or plants and flowers carried by airline passengers provide a likely explanation. F. D. BENNETT, Commonwealth Institute of Biological Control, Gordon Street, Curepe, Trinidad, West Indies; AND R. M. BARANOWSKI, Agricultural Research and Education Center, University of Florida, 18905 SW 280 St., Homestead, FL 33031 USA.

1Florida Agricultural Experiment Station Journal Series No. 2543.


The specimens were obtained from mass-collected puparia of the Caribbean fruit fly * Anastrepha suspensa* (Loew) and not from *A. ludone, (Loew)* the Mexican fruit fly, as recorded in the Catalog. The latter species does not occur in Florida. We have reared *Z. insularis* repeatedly as a gregarious

2Florida Agricultural Experiment Station Journal Series No. 2542.
parasite from larvae of the nitidulid *Lobiopa insularis* in the West Indies (Dominica and Trinidad) but never from *Anastrepha* spp. Although many thousands of puparia have been collected in our search for fruitfly parasites. We have also repeatedly observed adults of *Z. insularis* resting on or within nitidulid-infested guavas at Homestead, FL. Accordingly we consider that the host record should be amended to read nitidulid larvae, probably *Lobiopa* spp.

Considering the relative ease wherein nitidulid larvae can be included when aspirating or seiving *Anastrepha* larvae and puparia from trays placed under field collected guavas this explanation accounts for the Catalog record of a trypetid host for *Z. insularis*.

B. R. Subba Rao (1972). Entomophaga 17: 179-95) listed the host of *Zeteticomus eylonicus* Subba Rao as *Dacus dorsalis*. It is likely that a similar circumstance, i.e., the inclusion of nitidulid larvae with fruit fly puparia in an emergent container, accounts for this record.—F. D. BENNETT, Commonwealth Institute of Biological Control, Gordon Street, Curepe, Trinidad, West Indies; AND R. M. BARANOWSKI, Agricultural Research and Education Center, University of Florida, 18905 S. W. 280 Street, Homestead, FL 33030 USA.

---


Seed of 21 sorghum entries obtained from the world collection maintained at this laboratory and previously rated as resistant to the sorghum midge and/or birds were equilibrated over 6 weeks to ca. 14.5% moisture content in a chamber at 30°C and 72% RH. A test unit consisted of 20 g of seed placed in a 473-ml screen-covered Mason jar along with 20 adult rice weevils of undetermined sex. The test, with 4 replicates/treatment, was conducted also in a chamber at 30°C and 72% RH. After 3 wk, weevils were removed and the jars returned to the test chamber for an additional 6 wk. All insect progeny and feeding debris were then removed, and each grain sample was weighed. Data were analyzed with standard analysis of variance and means were separated by Duncan's multiple range test.

The 21 sorghum genotypes varied significantly in the amount of weevil damage sustained. As shown in Table 1, the loss in grain sample weight ranged from 4% on FC 16205 to 59% on CI 171. Sorghum FC 16205 not only sustained the lowest level of weevil damage in these studies but also rated