ANTS OF THE ARCHBOLD BIOLOGICAL STATION,
HIGHLANDS COUNTY, FLORIDA
(HYMENOPTERA: FORMICIDAE)

MARK DEYRUP
Archbold Biological Station
P. 0. Box 2067
Lake Placid, Florida 33852
and
JAMES TRAGER
Archer Road Entomology Lab
University of Florida
Gainesville, Florida 32611

ABSTRACT

The 102 species of ants known to occur on the Archbold Biological Station in Highlands Co., Florida are listed with annotations on their habitat and microhabitat preferences and timing of nuptial flights. The diversity of the fauna results from the confluence of several biogeographic groups of ants. Several species are endemic to the xeric scrub of central Florida, which was an insular refugium during Pleistocene or Pliocene flooding. About 20 species are exotic, of which 6 have invaded scrub habitats. The invasibility of south Florida to exotic ants and the biogeographic affinities of native ants are discussed.

RESUMEN

Se registran las 102 especies de hormigas ya conocidas de la Estación Biológica Archbold en el condado Highlands en la Florida. Se presentan informaciones sobre el habitat y el microhabitat preferidos y sobre la sazon del vuelo nupcial. La diversidad de esa fauna resulta de la confluencia de varios grupos biogeográficos de hormigas. Algunas especies son endemicas del matorral xérico de la Florida central, que era un refugio insular durante inundaciones de la Pleistocene o Pliocene. Approximadamente 20 especies de esta fauna son exóticas, de las cuales 6 han colonizado el matorral xérico. Se trata de la invasibilidad de la Florida meridional por hormigas exóticas y de las afinides des biogeográficas de las hormigas nativas.

INTRODUCTION

The Archbold Biological Station (ABS) is a permanent ecological reserve located at the south end of the Lake Wales Ridge in Highlands County, Florida. The main property consists of about 4,377 acres, including an 80-acre lake; there is also a 8-acre tract (Price Memorial Tract) on the north side of Lake Placid.

The ant fauna of the ABS is of special interest for several reasons, one of which is the biogeography of the region. The Lake Wales Ridge is a series of former islands isolated during the Pleistocene or Pliocene flooding of peninsular Florida (Laessle 1968). The ridge is presently characterized by excessively drained sandy soil. Both the history and soil conditions of the area contribute to a relatively high proportion of endemism among species and subspecies of certain groups of plants and animals (Hubbell 1961). The presence or absence of endemic forms of ants is therefore of interest with respect to the biogeography of the region and the biogeography of ants. A second reason for the study is the apparent ecological importance of ants at the ABS. Preliminary obser-
vations suggested that ants are both diverse and abundant in most habitats. An understanding of the ant fauna is a useful step toward the long-term goal of a better understanding of the invertebrate ecology of the ABS. Finally, we regard the ants of the ABS as an important research resource. Our list informs the scientific community about the ants available for study at the ABS.

There have been no intensive surveys of ants in any part of southern Florida; this study provides baseline information that will be useful in documenting the invasion of exotic species and shifts in the ranges of native species.

Several workers have previously studied ants at the ABS or specimens from the ABS. These projects dealt with species of Formica (Schneirla 1944), Conomyrma (Smith 1944), Pheidole (Naves 1983), Solenopsis (Diplorhoptrum) (Thompson 1980), Camponotus (Walker 1983), and Paratrechina (Trager 1984). Current projects include studies of the genera Pseudomyrmex (R. Klein) and Conomyrma (Trager, in preparation). There have been no previous attempts to compile a complete list of ants of the ABS.

MATERIALS AND METHODS

The ant survey began in December 1980, and continued through the summer of 1984. Four kinds of traps were used. The first was a series of small vials with perforated tops that permit entry to small ants. These vials were baited with commercial canned tuna fish, buried, and left overnight. The second type of trap consisted of small plastic cups baited with canned pet food, set out, and retrieved as soon as they were invaded by ants. Two small malaise traps in a sand pine scrub area were used continuously from June 1983 through 1984 to trap alates. An ultraviolet light was used to trap alates at night. Tullgren extraction was used to obtain ants and associated arthropods from about 300 samples of litter of various types. Ants were also found by searching for entrances in soil and by breaking open logs and twigs. Rocks do not naturally occur at the Archbold Biological Station, and the small number of imported rocks present were not important collection sites.

The vegetation types of the ABS have been classified and mapped by Abrahamson, et al. (1984). The following classification is taken from a vegetation map prepared in 1983 by these authors. The categories SP, NS and MOr are original.

RS: Southern Ridge Sandhill. Open woodland of south Florida slash pine (Pinus elliottii var densa Little and Dorman), xerophytic oaks (Quercus laevis Walter, Q. myrtifolia Willdenow, Q. chapmanii Sargent, Q. geminata Small), and scrub hickory (Carya floridana Sargent). Understory composed of wire grass (Artemisia stricta Michaux), scrub palmetto (Sabal etonia Swingle), and herbs. On well-drained upland soil.

RSt: Southern Ridge Sandhill with turkey oak (Quercus laevis).

RSh: Southern Ridge Sandhill with scrub hickory (Carya floridana).

SS: Sand Pine Scrub. Dense to widely-scattered stands of sand pine (Pinus clausa Chapman) with understory dominated by xerophytic oak and other shrub species or rosemary (Ceratiola ericoides Michaux). On well-drained deep sandy soil.

SSr: Sand Pine Scrub with rosemary (Ceratiola ericoides).

SSO: Sand Pine Scrub with oak (Quercus spp.)

SF: Scrubby Flatwoods. Low shrubby growth of xerophytic oaks (Quercus inopina Ashe, Q. chapmanii, Q. geminata) and palmettos (Serenoa repens Bartram and Sabal etonia) typically with widely-scattered south Florida slash pines and often sand pines. On well-drained sandy soil.

SFI: Scrubby Flatwoods with inopina oak (Quercus inopina).

SFI: Scrubby Flatwoods with sand live oak (Quercus guminata).

FLw: Flatwoods with wiregrass (*Aristida stricta*).

FLc: Flatwoods with cutthroat grass (*Panicum abscessum* Swallen).

FLg: Flatwoods with gallberry (*Ilex glabra*) and fetterbush (*Lyonia lucida* Lamark).

FLp: Flatwoods with saw palmetto (*Serenoa repens*).

SP: Seasonal Pond. Open seasonally flooded depressions, usually with distinctly zoned vegetation dominated by grasses or shrubby *Hypericum edisonianum* Small and often bordered by a dense band of saw palmettos. Soils ranging from sandy to highly organic.

SPb: Seasonal Pond with broomsedge (*Andropogon brachystachys*).

SPc: Seasonal Pond with cutthroat grass (*Panicum abscessum*).

SPh: Seasonal Pond with *Hypericum edisonianum*.

MO: Man-modified.

MOT: Man-modified, landscaped, park-like.

MOR: Man-modified, roadside.

MORr: Man-modified, railroad.

NS: *Nyssa biflora* Walter swamp.

All records listed below have associated pinned and labelled voucher specimens. These specimens have been divided between the reference collection of the Archbold Biological Station and the Florida State Collection of Arthropods, Gainesville.

Annotated List of Species

The species listed below are arranged according to their order in the Formicidae part of Catalog of Hymenoptera in America North of Mexico (Smith 1979). We have refrained as much as possible from innovations in nomenclatural usage. A number of species have manuscript names that have not been published; in some cases the names were presented in theses that may not be published in the near future. In such cases we do not list the unpublished name, but give the appropriate unpublished name in the annotations. Subspecific names are used primarily when there is reason to believe that the subspecies will eventually be given specific rank. Abbreviations of vegetation type are explained above. Unless otherwise indicated, malaise trap records are from the SSo habitat. Habitat information is presented in Table 1.

Neivamyrmex Borgmeier

Of the three species of *Neivamyrmex* found in Florida only *N. opacithorax* is known from southern Florida (Watkins 1978). Army ants escaped notice at the Archbold Biological Station until 1983, and workers have never been seen in the open. Possibly, the desert-like conditions of upland areas of southern Florida forces army ants to become nocturnal or exclusively subterranean; Creighton (1950) speculates that arid conditions explain the cryptic nature of army ants in the southwestern United States. Flightless
TABLE 1. Collection data by habitat. Numbers refer to number of occasions a species was taken in a habitat. See methods for habitat categories.

<table>
<thead>
<tr>
<th></th>
<th>RSt</th>
<th>RSh</th>
<th>SSr</th>
<th>SSp</th>
<th>SFl</th>
<th>SFi</th>
<th>FL</th>
<th>FLw</th>
<th>FLc</th>
<th>FLg</th>
<th>FLp</th>
<th>BH</th>
<th>SPb</th>
<th>SPc</th>
<th>SPm</th>
<th>Mo</th>
<th>MO</th>
<th>MOo</th>
<th>MOrr</th>
<th>NS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amblyopone pallipes</td>
<td>3</td>
<td>12</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Aphcenogeter ashmeadi</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Aphcenogeter flemingi</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Aphcenogeter floridanus</td>
<td></td>
</tr>
<tr>
<td>Aphcenogeter texarka</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Aphcenogeter treatae</td>
<td></td>
</tr>
<tr>
<td>Brachymyrmex depilis</td>
<td></td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>10</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Brachymyrmex obscursior</td>
<td></td>
</tr>
<tr>
<td>Camponotus abdominalis floridanus</td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Camponotus castaneus</td>
<td></td>
</tr>
<tr>
<td>Camponotus impressus</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Camponotus resilis</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Camponotus sessus</td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Camponotus tortuganus</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Camponotus nearcticus</td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Camponotus pavidosus</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cardiocondyla emeryi</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiocondyla nude</td>
<td></td>
</tr>
<tr>
<td>Cardiocondyla venustula</td>
<td></td>
</tr>
<tr>
<td>Cardiocondyla wrightonii</td>
<td></td>
</tr>
<tr>
<td>Conomyrmex flavopreta</td>
<td></td>
</tr>
<tr>
<td>Conomyrmex smithi</td>
<td></td>
</tr>
<tr>
<td>Conomyrmex sp. 1</td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Conomyrmex sp. 2</td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Conomyrmex sp. 3</td>
<td></td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Crenotalopister ashmeadi</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Crenotalopister clara</td>
<td></td>
</tr>
<tr>
<td>Crenotalopister minutissima</td>
<td></td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>RSt</td>
<td>RSh</td>
<td>SSr</td>
<td>SSo</td>
<td>SF1</td>
<td>SFi</td>
<td>FL</td>
<td>FLw</td>
<td>FLc</td>
<td>FLg</td>
<td>FLp</td>
<td>BH</td>
<td>SPb</td>
<td>SPc</td>
<td>SPb</td>
<td>M0</td>
<td>MCl</td>
<td>MOr</td>
<td>MOr</td>
<td>NS</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>Crenatagaster sp.</td>
<td></td>
</tr>
<tr>
<td>Cyphomyrmex fuscescens</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cyphomyrmex minutus</td>
<td>2</td>
<td></td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Discityrinx testacea</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Euryopalpitriz floridana</td>
<td></td>
</tr>
<tr>
<td>Formica cerbuleti</td>
<td></td>
</tr>
<tr>
<td>Formica pallidifrons</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hypepoxera inezzata</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hypepoxera opaciceps</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hypepoxera opacior</td>
<td>6</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypepoxera punctatissima</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iridomyrmex pruinipennis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptogenys elongatamanzi</td>
<td></td>
</tr>
<tr>
<td>Leptothorax peganuei floridanus</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Leptothorax texanus</td>
<td>2</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Leptothorax wheeleri</td>
<td></td>
</tr>
<tr>
<td>Monomorium florideum</td>
<td></td>
</tr>
<tr>
<td>Monomorium pharomias</td>
<td></td>
</tr>
<tr>
<td>Monomorium viridum</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td></td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myrmecia americana</td>
<td></td>
</tr>
<tr>
<td>Neivaymyrmex opacithorax</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ochetomyrmex auropunctatus</td>
<td></td>
</tr>
<tr>
<td>Odontomachus brunnatus</td>
<td></td>
</tr>
<tr>
<td>Odontomachus clarus</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pachycondyla stigma</td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paratrechina arenivaga</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Paratrechina bournica</td>
<td></td>
</tr>
<tr>
<td>Paratrechina concinna</td>
<td></td>
</tr>
<tr>
<td>Paratrechina feisonensis</td>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

March, 1986
<table>
<thead>
<tr>
<th>Species</th>
<th>1</th>
<th>1</th>
<th>3</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paratrechina losgicorns</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Paratrechina phantasma</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Paratrechina viridula</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Paratrechina wejcki</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pheidole dentata</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Pheidole dentigula</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Pheidole floridana</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>Pheidole metallicans</td>
<td>10</td>
<td>7</td>
<td>23</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Pheidole moerens</td>
<td>12</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Pheidole morris</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Pheidole littoralis</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pheidole adriantei</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platythyrea punctata</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pogonomyrmex badieis</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proceratium croceum</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomyrmex simplex</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomyrmex ejectus</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomyrmex elongatus</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomyrmex mexicanus</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomyrmex pallidus</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomyrmex seminole</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quadristerma emmae</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smithsonian clypeata</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smithsonian creightoni</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smithsonian d'etrictii</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smithsonian talpa</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solenopsis carolinensis</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solenopsis geminata</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solenopsis globularia</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solenopsis invicta</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solenopsis nickersoni</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solenopsis perpendsi</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solenopsis picta</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solenopsis tennesseensis</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

211
TABLE 1. (CONTINUED)

<table>
<thead>
<tr>
<th>Species</th>
<th>RSt</th>
<th>RSh</th>
<th>SSR</th>
<th>SSr</th>
<th>SF1</th>
<th>SFi</th>
<th>FL</th>
<th>FLw</th>
<th>FLc</th>
<th>FLg</th>
<th>FLp</th>
<th>BH</th>
<th>SPb</th>
<th>SPc</th>
<th>SPn</th>
<th>Mo</th>
<th>MOl</th>
<th>MOor</th>
<th>MOrr</th>
<th>NS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solenopsis sp.</td>
<td>12</td>
<td>2</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strumigenys eggersi</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Strumigenys louisianae</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Strumigenys rogeri</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tapinoma litorale</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tapinoma melanocephalum</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetranorium bicarinatum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Tetranorium semillatum</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trachymyrmex septentrionalis</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Trichoscaphe membranifera</td>
<td></td>
</tr>
<tr>
<td>Xenomyrmex floridanus</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
queens restrict the dispersal of army ants; water barriers may have prevented the other
two species of army ants from reaching southern Florida. We collected *N. texanus*
Watkins on the Lake Wales Ridge in Avon Park, about 54 miles north of the Archbold
Biological Station.

opacithorax (Emery). Workers in nest of *Paratrechina phantasma* in firelane. Males
were collected in malaise traps; the flight period was concentrated in September and
October both years. Total individuals in 1983-4 were grouped as follows: Aug.:3;
Sept.:25; Oct.:24; Nov.:3.

Amblyopone Erichson

Smith (1979) does not include Florida in the range of either of the two eastern
species of *Amblyopone*, but *A. pallipes* has been reported from Welaka (Van Pelt 1958)
and Dunedin (M. R. Smith 1930).

pallipes (Haldeman). At base of dead and live pines; *Quercus myrtifolia* litter; *Q.
geminata* litter; *Q. imbricaria* stump; hickory litter. Males were collected in malaise traps.
In 1983, out of 39 males, 22 were captured in Aug. and Sept., but there was no late
summer increase in captures in 1984.

Platythyrea Roger

punctata (Smith). At the base of live magnolia; under bark of suspended dead branch;
on rotten stump. Males in malaise traps in Sept.-Nov.

Proceratium Roger

crocum (Roger). In rotten pine log. Males in malaise traps in June-Aug. Not previously
reported south of Putnam Co. (Van Pelt, 1958).

Discothyrea Roger

testacea (Roger). In deep pine litter; at base of live pine; in dead palmetto trunk; in
Andropogon tussock.

Pachycondyla Smith

stigma (Fabricius). In rotten pine wood; under bark of dead pine; under bark of dead
Gordonia, in rotten *Gordonia*, in litter at base of *Lyonia ferruginea*. Alates from nests

Hyppoconera Santschi

inexorata (Wheeler). In pine litter, hickory litter, *Quercus chapmanii* litter, turkey
oak litter; rosemary litter; litter of *Bafaria racemosa* leaves.

opaciceps (Mayr). Under railroad ties; in lawn thatch; pine litter, in *Melaleuca* log;
in *Quercus laevis* litter. Alates in flight in June, Sept.-Feb. From the continuously
monitored malaise traps 20 specimens (out of a total of 24) are from the months Oct.-
Dec., suggesting a late fall flight season.

opaciior (Forel). In pine litter; rotten pine; *Quercus geminata* litter; rotten oak; oak
litter; hickory litter; cutthroat tussock; under dead *Serenoa repens*; *Quercus chapmanii*
litter; pine-sweetbay litter; magnolia litter; wire grass litter; broomedge tussock; *Quercus
myrtifolia* litter; flying squirrel nest box; grape-oak litter. Alates in flight June-July,
Oct.-Dec. Not previously reported south of Putnam Co. (Van Pelt 1958); we have col-
clected specimens from several sites south of the Archbold Biological Station, including
Key Largo.

punctatissima (Roger). In cutthroat tussock, broomedge tussock, base of dead
pine; base of live pine; base of *Nyssa biflora*; under dead branch on ground; tree hole
in *Quercus laurifolia*; in rotten pine; in rotten *Melaleuca*; under fallen post.
Leptogenys Roger

elongata munnis Wheeler. No workers seen from ABS. Males in malaise trap July-Dec. In both 1980 and 1984 the majority of specimens (29 out of 45) were collected in Oct. Taxonomic note: Trager (in preparation) will show that the Florida *Leptogenys*, long considered a subspecies of the Texas species, *L. elongata*, is in fact a distinct species.

Odontomachus Latreille

There are apparently three species of *Odontomachus* in Florida. The taxonomy of these species will be discussed in a separate paper. We use the name *O. brunneus* somewhat differently than Brown in his 1976 revision of the genus, in that we consider *O. ruginodis* (found in Dade and Monroe counties to the south of ABS) a distinct species.

clarius Roger. In broomsedge tussock; at base of oak; in *Befaria racemosa* litter; under log; in stomach of armadillo. Males in malaise traps: this species was the most abundant ant in malaise trap samples. More than 2,000 specimens were collected during the summer and fall of 1983. The general flight pattern is several large flights from late July through November.

ruginodis Wheeler. We have not seen *ruginodis* at ABS, but a male captured in September 1979 is deposited in the Florida State Collection of Arthropods in Gainesville.

Pseudomyrmex Lund

There are six species of this genus living on the Archbold Biological Station, according to Ward's 1985 revision of the genus. Three are similar-appearing yellow species whose coexistence in Florida was not recognized by Creighton (1950) or Smith (1979).

cubaenis Forel. In twig of *Callicarpa americana* MO; on picnic table MO; alates Nov., Dec., and Jan. Ward (1985) has shown that this species is distinct from *elongatus* and is more widely distributed in Florida.

ejecatus (F. Smith). On *Quercus laurifolia*; on *Myrica cerifera*; nest in dead grape vine; nest in dead weed stalk; nest in twig of *Callicarpa americana* in flying squirrel nest box. Alates in nest in Mar., at ultraviolet light in Oct., Mar., June.

elongatus (Mayr). On *Myrica cerifera*; nest in dead grape vine.

mezicanus (Roger). On trunk of pine; on flower of *Ilex cassine*; making hole and rubbing neciar from flower of *Vaccinium corymbosum*; at tuna bait on pine; nest in *Sambucus* twig; nest in stem of *Callicarpa americana*; nest in pine twig; nest in dead grape vine. Alates in nest Oct., alates in flight in May-July, Oct.

pallidus (Smith). Several nests in broomsedge culms; in stem of *Lacnanthes caroliniana*; in stem of *Smilax*. Alates in flight Oct.-Dec.

seminole Ward. Nests in broomsedge culms; on flower of *Ilex cassine*; in stem of *Lacnanthes caroliniana* (Lamarck). Alates in nest in Jan., Feb., Nov. This species may be distinguished from *P. delicitatus* and *P. pallidus* by the following characters: head of worker in profile with distance between eye and upper edge of head about equal to the malar space; worker with a pair of faint black spots on the first gastral tergite; queen more than 6 mm in length; male genitalia not triangular in profile.

simplex (F. Smith). On twig of pine; on trunk of dying pine; on twig of *Persea humulius*; on *Myrica cerifera*; nest in culm of broomsedge. Alate in flight in Oct.

Pogonomyrmex Mayr

badus (Latreille). On bare sand in open areas. Alates in flight in June-July. At the Archbold Biological Station males of this species are entirely reddish brown, not bicolored (blackish brown with light brown gaster) as they are elsewhere. Mating between
sibs at the nest entrance may be the rule in this population.

Aphaenogaster Mayr

ashmeadi (Emery). In deep pine litter; at pet food bait; at base of pine stump. Not previously collected south of Pasco Co. (Carroll 1975).

flemingi (Smith). In dry cutthroat seasonal pond; nest in opening, under grass clump, near Lake Placid; in stomach of armadillo. Vegetation types: SPc (3), MO (2), SSo (1). Not previously collected south of Alachua Co. and Putnam Co. (Carroll 1975).

floridana (Smith). Nests at edge of sand road. Not previously reported south of Alachua Co. (Carroll 1975).

texana (Emery). At base of pine; at base of *Gordonia lasianthus*; at pet food baits; nest in rotten pine log; nest in rotten Melaleuca log. Carroll (1975) recognizes this species as *A. carolinensis* Wheeler, elevating Wheeler's varietal name to species rank. We use the name *texana* because Carroll's work has not yet been published.

treatae (Forel). Under *Quercus inopina*; nest under *Q. inopina*. Not previously reported south of Polk Co. (Carroll 1975).

Pheidole Westwood

Pheidole advena Naves. At tuna bait; at pet food bait; at cookie crumbs; in open sand; under *Quercus inopina*; under *Xenidia americana* Linnaeus; under *Licania michauxii* France; at edge of drive; prey of *Brachymenurus* sp. Alates at ultraviolet light in June.

dentata (Mayr). At pet food baits; base of pine; on palmetto leaf; on cement walk; under *Quercus chapmanii*; in pine litter; base of *Gordonia lasianthus*; under bovine dung; *Quercus myrtifolia* litter; *Carya floridana* litter; at base of *Nyssa biflora*; in stomach of armadillo. Alates at light in June.

dentigula Smith. At base of live pine; in dead pine; *Lyonia* litter; oak-pine litter; hickory litter; *Quercus myrtifolia* litter; *Q. chapmanii* litter; *Q. laevis* litter; palmetto-pine litter; pine litter, *Ligustrum* litter; hollow in live pine; base of *Gordonia lasianthus*. Alates at light in June.

floridana Emery. In hickory litter; *Quercus geminata* litter; *Q. myrtifolia* litter; at tuna bait; at pet food bait; under bark of dead pine; at base of live pine; cutthroat tussock; broomseed tussock; in lawn; in rotten log; palmetto-pine litter; pine litter; *Ceratiola* litter; *Gordonia* litter; *Magnolia* litter; *Nyssa biflora* litter; in dead palmetto trunk. Alates at ultraviolet light in June.

metallescens Emery. In hickory litter; *Quercus chapmanii* litter, *Lyonia* litter; wiregrass litter; at tuna bait; at pet food bait; at rolled oats bait. Alates in malaise trap in July.

moerens Wheeler. On pavement by ABS building; in *Andropogon* tussock by Lake Placid.

morrisi Forel. At tuna bait; at pet food bait; at base of live *Pinus elliottii*; in *Andropogon brachystachys* tussock; nest in open gravel along railroad; in sandy firelanes; taking nectar from *Euthamia minor* (Michaux).

littoralis Cole. Nests (12 seen) in open sand of fire lanes; only one nest seen in vegetation (SSr). Taxonomic note: Navoe (1985) in his monograph on Florida *Pheidole* gives this form specific rank.

Cardiocondyla Emery

emeryi Forel. At pet food bait; on live pine; in lawn litter; dead specimen on back of chrysopid larva; at edge of lake; in bay twig; in pine twig.

venustula Wheeler. Lake edge; edge of lawn.

wrightonii (Fovel). Lake edge.

Crematogaster Lund

ashmeadi Mayr. In dead twig of Rhus copallina; in dead branch of Pinus clausa; in dead twig of hickory; in Euoparum stem; in dead Quercus laevis; in dead Ilex ferruginea; in dead leaves of large Tillandsia. Alates in flight in Apr., June-Aug., Oct., Dec.; alates in nest in Oct.

clarum Mayr. In dead Hypericum edisonianum; in rotten log; on flower of Opatnia compressa; on grasses, in grass stem; in dead twig of Pinus elliottii.

minutissima Mayr. In rotten Melaleuca log; litter at base of Nyssa biflora. Alates at ultraviolet light in June.

Crematogaster sp. An undescribed species resembling C. ashmeadi in the following characters: small size; short, thick propodeal spines; a single erect hair on each thoracic humerus; short appressed pubescence on the head. Unlike C. ashmeadi, this species has clear reddish-yellow head and thorax, contrasting sharply with the blackish gaster. All colonies found to date were in pine trees, in contrast with C. ashmeadi, which nests in a variety of situations.

Monomorium Mayr

floricola (Jerdon). On Morus rubra; on Clerodendrum; in twig of Callicarpa americana.

pharaonis (Linnaeus). Abundant in Archbold Biological Station buildings.

viridum Brown. At pet food bait; in open sand of fire lane; in gravel along railroad; tending aphids on Palafocia; on Opatnia compressa; on Clerodendrum flowers. Alates at ultraviolet light in June.

Xenomyrmex Forel

floridanus Emery. In Sambucus twig; in hickory twig; in Pinus clausa twig; in malaise traps; on table under Quercus laurifolia. Alates in malaise trap in Oct. and Dec.

Solenopsis Westwood

carolinensis Forel. Under log by railroad; in nest of Monomorium viridum by roadside.

geminata (Fabricius). In wet sand near seasonal pond; in gravel along railroad; along edge of lake. Alates at ultraviolet light in Apr., May, Oct.; alates in nest in July. This species occurs in red and black color phases. Only the red form was found on the main Archbold Biological Station property, but the black form occurs in moist situations near the edge of the Nyssa swamp on the Lake Placid property.

globularia (Smith). At pet food bait; in rotten pine log; in dead palmetto stump in fire lane.

nickersoni Thompson. In rotten pine log; at base of large slash pine; Andropogon tussock; sand pine litter; cutthroat tussock; Quercus laevis litter; hickory litter; pine and palmetto litter; Ceratola litter. This is a recently described species (Thompson 1982) not included in the Hymenoptera catalog.

perpandei Forel. Under fence post; under rock; in nest of Monomorium viridum; in nest of Aphaenogaster floridanum; in gravel along railroad. Alates in nest in Sept.

picta Emery. In dead branch of Pinus elliottii; in dead branch in crown of Pinus clausa; in nest box of flying squirrel; in “trash pile” on back of chrysopid larva.

tennesseensis Smith. In pine litter; in palmetto and pine litter; in hickory and pine
litter; at base of dead pine; in *Quercus geminata* litter; in *Q. virginiana* litter, in *Q. myrtifolia* litter; in *Q. laevis* litter; in rotten pine log; in hickory litter; in dead palmetto stem; *Lyonia ferruginea* litter; cutthroat tussock; *Vaccinium* sp. litter; *Schinus* litter; magnolia litter; wire grass litter; *Ceratiola* litter.

Solanopsis sp. In cutthroat tussock; in palmetto litter; *Lyonia ferruginea* litter; wire grass litter; pine litter; *Ceratiola* litter; palmetto and pine litter; in rotten pine log; in pine stump; magnolia litter; loose bark at base of pine; *Quercus laevis* litter; *Q. myrtifolia* litter; *Q. geminata* litter; *Befaria racemosa* litter; under log near railroad; hickory litter. This small yellow *Diplotrichum* resembles *S. carolinensis*, but has short sparse hair on the vertex and a conspicuous glabrous midline on the front of the head. This species may prove to be a southern variant of *S. texana* Emery.

Leptothorax Mayr

pergandei floridanus Emery. At pet food bait; in hickory litter; in oak litter; in pine litter; nest in buried dead *Lyonia* stem; nest in buried hickory nut. Alates at ultraviolet light in May.

texanus Wheeler. At tuna bait; at pet food bait.

wheeleri Smith. On dead *Pinus elliottii*.

Myrmecina Curtis

americana Emery. In rotten pine log.

Tetramorium Mayr

bicarinatum (Fabricius). On flowers of *Erechtites*; nest in stump of bay tree. Taxonomic note: This species was long known as *T. guineense*. Bolton (1977) has shown that the type of *guineense* is in fact a *Pheidole* and that *bicarinatum* is the next available name.

simillimum (Smith). At pet food bait; on fallen orange; at base of *Pinus clausa*; at base of *Pinus elliottii*; on *Morus rubra*; in lawn; at base of *Quercus laurifolia*, under fence post; in “trash pile” on back of chrysopid larva; at edge of lake.

Ochetomyrme Mayr

Strumigenys Smith

The distribution of species of *Strumigenys* in Florida is discussed by Deyrup and Trager (1984).

eggersi Emery. *Pinus elliottii* litter; *P. clausa* litter, base of standing dead pine; pine and hickory litter; hickory litter; *Ligustrum* litter; *Schinus* litter; *Quercus laevis* litter; *Q. laevis* stump; *Q. geminata* litter; *Q. laurifolia* litter; *Q. myrtifolia* litter; *Q. virginiana* litter; *Nyssa biflora* litter; *Ceratiola ericoides* litter; dead palmetto stem; base of live palmetto.

louisianae Roger. In *Quercus geminata* litter; in *Pinus clausa* litter.

rogeri Emery. In litter at base of *Pinus elliottii*; under rotten pine; pine and hickory litter; *Quercus chapmanii* litter; magnolia and *Gordonia* litter; at base of dead magnolia.

Smithistruma Brown

All species of *Smithistruma* are scarce at the Archbold Biological Station, and apparently confined to the more mature areas of a hickory ridge. Mature sand pine scrub areas, which are more mesic than the hickory ridge and have more pockets of deep litter, did not provide any specimens of *Smithistruma*.

clypeata (Roger). Oak-hickory litter. This not previously reported south of Putnam Co. (Van Pelt 1958).
creightoni (Smith). In Quercus geminata litter; in Pinus clausa litter. Not previously reported south of Putnam Co. (Van Pelt 1985).
dietrichi (Smith). In hickory litter. Not previously reported south of Putnam Co. (Van Pelt 1958); we have collected specimens in Dade Co.
tulpa (Weber). In Quercus geminata litter; in hickory litter; in Vaccinium myrsinites litter; in oak and hickory litter. Not previously reported south of Putnam Co. (Van Pelt 1958).

Trichoscapa Emery
membranifera (Emery). In moist disturbed area; in Nyssa sylvatica litter.

Quadriatruma Brown
emmagae (Emery). In Pinus elliottii litter; in P. clausa litter; under dead P. elliottii, in Quercus geminata litter; in Q. chapmanii litter; in Q. laevis stump; in Q. myrtilloides litter; in Q. laevis litter; in cutthroat tussock; in Andropogon tussock; in dead palmetto stem; in Ligustrum litter; in hickory litter; in wire grass litter; in Gordonia litter; under Melaleuca log; in Nyssa sylvatica litter. The single published U. S. record of this species is from Homestead (Smith 1979). Q. emmagae is well established in several sites we have visited in Dade Co. and Monroe Co.; we have not collected it north of the Archbold Biological Station.

Eurhopalothrix Brown and Kempf
floridana Brown and Kempf. In dead palmetto stem. Previously known only from Highlands Hammock State Park (Brown & Kempf 1960). In addition to a collection from the Archbold Biological Station, we have collected this species in Dade Co. (Matheson Hammock), Monroe Co. (Key Largo), Marion Co. (Ocala National Forest), and Alachua Co. (Gainesville). This species is possibly a tropical exotic (Brown & Kempf 1960). Specimens have also been collected in Tamaulipas, Mexico (W. L. Brown, personal communication).

Cyphomyrmex Mayr
The rimosus group of this genus is currently undergoing revision by Snelling, who provided the names used here.
fuscus Emery. In rotten log; along lake shore, on mud; in abandoned fire ant mound; under board. Alates in flight in May, June, Oct.-Dec. This species has long been confused with C. minutus, but is clearly distinguished by larger size, darker color, sharp and prominent thoracic protuberances. This species is known from southern South America, and has not previously been reported from the United States, though we have found it to be common throughout Florida.
minutus Mayr. In hickory litter; at base of dying Pinus clausa; in Nyssa biflora litter; in grass tussock on lake shore; in fern litter; under fence post; in Ligustrum litter; under palmetto stump. Alates in flight in June, Oct.; alates in nest under fallen fence post in Jan. This species is not found in northern Florida.

Trachymyrmex Forel
septentrionalis (McCook). In hickory leaf litter; nest in open fire lane; at base of dying Pinus clausa; under Lyonia ferruginea; at pet food bait; in lawn. Alate in malaise trap in June, Nov.; aggregation of males (on scrub oak) being eaten by scrub jays in July.

Iridomyrmex Mayr
There is widespread verbal agreement that the species below (I. pruinosis) should be transferred to Forelius.
pruinosis (Roger). At pet food bait; nests in open sand. Alates at ultraviolet light in June.
Conomyrma Forel

The genus Conomyrma presents special taxonomic problems for our study: of the five species at the Archbold Biological Station three are undescribed and the names of the other two have not been applied consistently. There are descriptions of the undescribed species in an unfinished manuscript by Trager. We will not refer to the manuscript names here because of the possibility of creating further taxonomic tangles should other names be chosen for these species.

flavopecta (Smith). Nests in open sand. Alates in nest: 11-VII-84. This species may be recognized by its striking coloration: the head and gaster are black, the thorax bright orange. The name flavopecta has been applied incorrectly to the more widely distributed Conomyrma sp 2.

smithi Cole. Sharing nest with Conomyrma sp. 2. Vegetation types: SPb (2), RSt (1). C. smithi is a varietal name (Cole 1936), appearing in the 1979 catalog as a synonym of C. insana (Buckley): Dorymyrmex pyramicus var. smithi. We cannot follow our conservative policy and refer to this species as a form of either insana or pyramicus, because neither name refers correctly to any species found in our area. C. smithi is recognized by its solid dark-brown color. The antennal scapes are relatively short and the head relatively broad compared with other Conomyrma species in south Florida. This species is a temporary nest parasite of Conomyrma sp. 2.

Conomyrma sp. 1. Nests in open sand; at pet food bait. This yellow species is unusually elongate and slender. No published names have been applied to this species, which is known only from the Archbold Biological Station.

Conomyrma sp. 2. Nests in sand around grasses, especially in man-modified habitats; at pet food bait; on Euthamia minus, in lawns; on flower of Ilex cassine. Alates at ultraviolet light in Sept.-Nov., May. Alates in nest in July. There is some variation in color and in queen size, and we may be dealing with more than one species. Specimens in collections are usually labelled C. pyramicus or C. flavopecta.

Conomyrma sp. 3. Nests in paths in scrub; at pet food bait. Alates in malaise trap in June and July. This small species is easily identified by the pronounced dorsal angle of the mesonotum and the shining, hairless gaster. In the field this species bears a remarkable resemblance to Pheidole morrisi and light forms of P. dentata. No published names have been applied to this species.

Tapinoma Foerster

litorale Wheeler. In dead grape vine; in dead Smilax vine; in dead hickory twig melanocephalum (Fabricius). In base of palmetto; on Clerodendrum flowers; on Baccharis; on flower of Ilex cassine; in rotten log.

Brachymyrmex Mayr

depilis Emery. In rotten log; in Pinus clausa litter; in P. elliotti litter; in palmetto and pine litter; in Quercus geminata litter; in outthroat tussock; in Andropogon tussock; in dead oak branch on ground; in Lyonia ferruginea litter; in Bofaria racemosa litter; in pine stump; in dead palmetto stem; in hickory litter; under bear feces; in Vaccinium litter. Alates in flight in June-Aug., Dec.

occurir Forel. On Baccharis; in grass along roadside.

Camponotus Mayr

abdominalis floridanus (Buckley). In hollow stick; under log; in dead palmetto trunk; under pieces of bark below standing dead pine; tending membracids on palmetto flower stalk; tending aphids on Palafaxia; on flowers of Ilex cassine; on extrafloral nectaries of Crotonaria mucronata; on Erechtites flower. Although this is the commonest Camponotus on the Archbold Biological Station, no flights of alates have been
observed. In other parts of Florida, the flights occur shortly after sunset during the summer rainy season.

castaneus (Latreille). In hickory litter; in Pinus elliottii; feeding on fallen tangerine; tending aphids on Pteleacanthus; on flower of Erechites. Alates at ultraviolet light in Jan.-May, Dec. This species has nocturnal mating flights in late winter and early spring.

impressus (Roger). On flower of Flex cassine; on large laurel oak; in hickory twig; in grape vine; in malaise trap. Alates at ultraviolet light in Apr.-June.

nearcticus Emery. On large Pinus elliottii; under bark of P. elliottii; in squirrel nest box on pine; on large P. clausa. Nests at the Archbold Biological Station and elsewhere in Florida are always in large pine trees.

pavidus Wheeler. This species is apparently the form described by Wheeler as C. fallax var. rasilis Wheeler. The form is considered a distinct species (C. rasilis) by Blum (1981). This form differs in morphology and nest site from the sympatric Camponotus sp. 1 and C. sayi (= C. rasilis Wheeler). In stub of Quercus laurifolia; in dead twig; in small branch of Q. laurifolia. Alate at ultraviolet light in Apr.

rasilis Emery. Alates at light in Jan. and Mar. This has been considered a form of C. sayi but is here considered a separate species. A recent study of mandibular gland compounds supports the separation of this form (Blum 1981), but the taxonomy of the complex has not been formally reviewed.

socius Roger. Specimens were collected in 1965 on the Archbold Biological Station, but this large, conspicuous, day-foraging ant was not seen during the present study. We conclude that this species is rare or extinct on the Archbold Biological Station. The exclusion of open ground in the sandhill habitats of the Archbold Biological Station, due to the exclusion of fire, might have contributed to the disappearance of this species.

tortuatus Emery. In dead pine; under log; in dead saw palmetto; under bark of standing dead pine. Alates at ultraviolet light in Sept.-Nov.

Paratrechina Motschulsky

Trager (1984) recently described 5 new species from the United States, of which 3 occur at the Archbold Biological Station.

bourbonica (Forrel). On Sida cordifolia, in tree hole in Quercus laurifolia; under bark of dead bay tree. Alates in nest in Dec.; alates in flight Oct.-Dec.

concinnus Trager. In rotten log in pond; under pine bark on ground. Alates in nest in Dec.

fusonensis (Forrel). In Pinus elliottii litter; in magnolia litter; in magnolia-Gordonia litter; at pet food bait. This species, synonymized under arenivaga by Creighton (1950), was recently shown (Trager 1984) to differ from arenivaga in ecology, color, and male genital characters.

longicornis (Latreille). On pavement by buildings; under laurel oak.

phantasma Trager. Nests in open sand. Alates in nest Oct. and Dec. This species is most abundant in Highlands County, with only a few scattered populations to the north.

wociiki Trager. In Andropogon tussock; in cutthroat tussock; Pinus elliottii litter; in rotten log; in large fallen bromeliad; under Cladonia mat; in Vaccinium litter; in hickory litter; in Quercus myrtifolia litter; at pet food bait. Alates in nest Jan.-Mar., Sept.-Nov.
Deyrup & Trager: South Florida Ants

Formica Linnæus

archboldi Smith. In cutthroat tussock; in Andropogon tussock. Alate in flight in May.
pallidefusa Latreille. At pet foot bait. Alates at light in June.

SUMMARY AND DISCUSSION

BIogeOGRAPHY OF ARCHBOLD BIOLOGICAL STATION ANTS

With 102 species of ants, the Archbold Biological Station has, by a considerable margin, the most diverse known ant fauna from any single locality in the United States. One reason for the richness of the ant fauna is the great diversity of habitats occurring on the Archbold Biological Station. Another reason is a confluence of faunistic elements at the south end of the Lake Wales Ridge. A third reason is the susceptibility of the area to colonization by exotics. The biogeographic groups of ants that mingle at the Archbold Biological Station are described briefly below. Our analysis is relatively unsophisticated because there are no state-wide surveys of Florida ants and because there have been few studies of phylogenetic relationships between Florida species and those in other areas, such as the West Indies or Texas. The species we have assigned to the various groups are listed in Table 2. We have assigned species to faunal groupings on the basis of distribution data in the Catalog of Hymenoptera (Smith 1970), and our own observations.

The widespread eastern ant fauna, which includes some transcontinental and even circumpolar species groups, is chiefly composed of forest-dwelling species. Typical species ranges extend north to Canada and west to Illinois. In the Florida panhandle, where there is a southward extension of the southern mixed hardwood forest (Greller 1980), several northern ants occur, which are apparently absent from the rest of Florida. Examples of these ants are Camponotus americanus Mayr, C. subbarbatus Emery, Leptothorax curvispinosus Mayr, L. schaumi Roger (Bhatkar and Whitcomb, unpublished collection data), and Formica subsericea Say (Wilson & Francœur 1974). A more dilute representation of the eastern ant fauna is found in north-central Florida, where there is a very broad transition zone between southern mixed hardwood forest and temperate broadleaved evergreen forest (Greller 1980). A finger of the transition zone extends down the Lake Wales Ridge to the northern border of Highlands County (Greller 1980). Somewhere between Alachua County and the south end of the Lake Wales Ridge, the eastern ant fauna becomes ever sparser. 13 widespread eastern species found in Alachua County and Putnam County (Van Pelt 1958) do not occur on the Archbold Biological Station. These species are Atta texana Roger, A. texana dens Mayr, Pheidole pilifera (Roger), Crematogaster lineolata (Say), Ponera pennsylvanica Buckley, Smithistruma ornata (Mayr), S. pulchella (Emery), Lasius alienus (Foerster), Lasius neogiger Emery, Prenolepis imparis (Say), Camponotus pennsylvanicus (DeGeer), Tapinoma sessile (Say), and Dolichoderus pastulatus Mayr. An additional species in this group is Polyrhachis lucidus Mayr (Trager & Johnson 1984). About 10 widespread eastern ants occur at the Archbold Biological Station (Table 2). A number of these (Amblyopone pallipes, Smithistruma clypeata, Formica pallidefusa) are usually associated on the Archbold Biological Station with xeric hammock habitats, such as mature SSO and mature RSh. Since such habitats are rare south of the Lake Wales Ridge, this may be the southernmost limit of several ants.

The southeastern ant fauna is a varied group, including arenicolous species that occur as far north as New Jersey and Illinois, as well as pine woods inhabitants that are found inland as far north as Tennessee. Many of these ants appear to be of southwestern origin, as disjunct populations or closely related species often occur in Texas or even further west. Some of these species are restricted to scrub and sandhill habitats; such
TABLE 2. Geographic ranges of ants found on the Archbold Biological Station.

<table>
<thead>
<tr>
<th>Eastern or Nearctic Species</th>
<th>Southeastern Species</th>
<th>West Indies and South Florida Species</th>
<th>Exotic Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amblyopone pallipes</td>
<td>Formica pallidefulva</td>
<td>Pheidole morrini</td>
<td>M. pharaonis</td>
</tr>
<tr>
<td>Aphaenogaster treatae</td>
<td>Iridomyrmex pruinosis</td>
<td>Solenopsis carolinensis</td>
<td>Quadrastum emmae</td>
</tr>
<tr>
<td>Brachymyrmex depilis</td>
<td>Myrmecina americana</td>
<td>Smithistruma elyptera</td>
<td>Solenopsis invicta</td>
</tr>
<tr>
<td>Camponotus castaneus</td>
<td></td>
<td></td>
<td>Strumigenys eggersi</td>
</tr>
<tr>
<td>Aphaenogaster ashmeadi</td>
<td>Crematogaster sp.</td>
<td>P. dentigula</td>
<td>Strumigenys louisiana</td>
</tr>
<tr>
<td>A. flemingi</td>
<td>Discothyrea testacea</td>
<td>P. floridana</td>
<td>Tetrarachis biovarianum</td>
</tr>
<tr>
<td>A. floridana</td>
<td>Formica archboldi</td>
<td>P. metallescens</td>
<td>Trighscapa membranifera</td>
</tr>
<tr>
<td>A. texana</td>
<td>Hyponerea inezorata</td>
<td>Pheidole adrianoi</td>
<td></td>
</tr>
<tr>
<td>Camponotus abdominalis</td>
<td>H. opaiceps</td>
<td>Pogonomyrmex badius</td>
<td></td>
</tr>
<tr>
<td>C. impressus</td>
<td>H. opacior</td>
<td>Proceratium croceum</td>
<td></td>
</tr>
<tr>
<td>C. rostis</td>
<td>Leptogenys elongata marni</td>
<td>Pseudomyrmex brunneus</td>
<td></td>
</tr>
<tr>
<td>C. socius</td>
<td>Leptothorax pergandei</td>
<td>P. pallidus</td>
<td></td>
</tr>
<tr>
<td>C. turgidus</td>
<td>L. texana</td>
<td>Solenops geminata</td>
<td></td>
</tr>
<tr>
<td>C. neanicus</td>
<td>L. wheeler</td>
<td>S. globularia</td>
<td></td>
</tr>
<tr>
<td>C. apivorus</td>
<td>Monomorium viridum</td>
<td>S. nickeri</td>
<td></td>
</tr>
<tr>
<td>Conomyrmex flavopsecta</td>
<td>Neivamyrmex opacithorax</td>
<td>S. perigaedae</td>
<td></td>
</tr>
<tr>
<td>C. smithi</td>
<td>Odontomachus brunneus</td>
<td>S. picia</td>
<td></td>
</tr>
<tr>
<td>Conomyrmex sp. 1</td>
<td>Odontomachus clarus</td>
<td>S. tennesseensis</td>
<td></td>
</tr>
<tr>
<td>Conomyrmex sp. 2</td>
<td>Paratrechina arenivaga</td>
<td>Solenopsis sp.</td>
<td></td>
</tr>
<tr>
<td>Conomyrmex sp. 3</td>
<td>P. concinna</td>
<td>Smithistruma creightonii</td>
<td></td>
</tr>
<tr>
<td>Crematogaster ashmeadi</td>
<td>P. fainmannsi</td>
<td>S. dietrichi</td>
<td></td>
</tr>
<tr>
<td>C. clara</td>
<td>P. phantasma</td>
<td>S. talpa</td>
<td></td>
</tr>
<tr>
<td>C. minutissima</td>
<td>P. wojsiki</td>
<td>Strumigenys louisiana</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pheidole dentata</td>
<td>T. similii</td>
<td></td>
</tr>
</tbody>
</table>

species are discussed in more detail below. The southeastern ant fauna includes about 61 species found on the Archbold Biological Station. There is little decrease in numbers of species between north-central Florida and the Archbold Biological Station; the only species to drop out are Neivamyrmex texanus Watkins, N. carolinensis (Emery), Cryptopone gilva (Rogers), Leptothorax bradleyi Wheeler, and Crematogaster vermiculata.
Emery. The last species is restricted to bald cypress (Buren 1968), which does not occur on the Archbold Biological Station.

A distinctive fauna of apparently native ants is shared by southern Florida and the West Indies. Some species extend into northern areas of Florida. Of 9 species in this group at the Archbold Biological Station, 4 do not reach north-central Florida. Three species found in the Florida Keys, Camponotus planatus Roger, Leptothorax allardi (Mann), and Zacryptocerus varians (Smith), do not occur at the Archbold Biological Station.

A group of about 22 exotic tropical ants includes representatives of all major tropical areas. Most species in this group are intolerant of severe cold, and are therefore confined in the United States to Florida, with the exception of the species that live indoors. These exotics are discussed in more detail below.

Comparison of Faunal Surveys of Florida Ants

A comprehensive comparison of the ant fauna of the Archbold Biological Station and that of other sites in Florida is hampered by a lack of comparable surveys. Van Pelt’s survey (1968) of the ants of the Welaka Reserve (Putnam Co.) is the only other study of the ants of a single locality. There are two regional surveys, one a study of the ants of the Florida Keys (Wilson 1964), the other an unpublished survey by A. P. Bhatkar and W. H. Whitcomb of the ants of the Red Hills region in northern Leon County. Although all these surveys seem to have been intensive, there is reason to suspect that Deleece funnel sampling in the Archbold Biological Station and Welaka surveys was much more extensive than in the other two surveys. Taxonomic problems beset all the surveys: several important Florida genera, including Conomyrina, Pheidole, Paratrechina, Camponotus, and Solenopsis, were in need of revision at the time of the surveys. In recent years these taxonomic problems have been partially resolved. Another problem is invasions of certain exotics since the time of the earlier studies.

In spite of all these discrepancies among the Florida surveys, they seem similar enough to allow a simple analysis that is not very sensitive to the addition or subtraction of a few species in a particular fauna. Such a test is provided by Sorensen’s coefficient of similarity (Southwood 1978): \(C_s = \frac{2j}{(a+b)} \), where “\(j \)” is the species common to both sites, “\(a \)” the total species at one site, “\(b \)” the total species at the other. The results are arranged in decreasing order of similarity.

- **Welaka-Red Hills**: \(C_s = \frac{2(55)}{(76+84)} = .69 \)
- **Welaka-ARS**: \(C_s = \frac{2(59)}{(76+102)} = .66 \)
- **ABS-Red Hills**: \(C_s = \frac{2(56)}{(84+102)} = .60 \)
- **ABS-Florida Keys**: \(C_s = \frac{2(52)}{(30+102)} = .39 \)
- **Welaka-Florida Keys**: \(C_s = \frac{2(18)}{(76+30)} = .34 \)
- **Red Hills-Florida Keys**: \(C_s = \frac{2(17)}{(84+30)} = .30 \)

These results are just as one might predict from the geographic locations of the four sites. Each fauna is most like that of its nearest neighbor along a north-south transect. The mainland sites are much more similar to each other than to the Florida Keys. The Keys differ from the mainland in the depauperate nature of their fauna. Wilson (1964) attributes this low diversity to large-scale perturbations, particularly hurricanes, which may eradicate most terrestrial ants.

The diversity of ant fauna at the Archbold Biological Station relative to that of Florida as a whole appears surprisingly high. We have compiled from various sources a checklist of Florida ants, including known undescribed species. This list includes 166 spp., so that the Archbold Biological Station includes 61% of the ants known from Florida. This contrasts with the situation in the herpetofauna: the Archbold Biological Station has 61 species of herps (J. N. Layne 1978, unpublished list) out of the Florida
fauna of 150 species (Ashton and Ashton 1974), or 41% of the fauna. This might be interpreted as an indication that herps tend to have more locally restricted species than ants, but it is more likely an indication that the ant fauna of the Archbold Biological Station is much better known than that of Florida in general. Several parts of the state that might be expected to have locally restricted populations, such as the Miami, Pensacola, Everglades, and Appalachian areas, have not been surveyed.

ANTS OF SCRUB AND SANDHILL HABITATS

The species of scrub and sandhill environments are of special interest to us, as a principal mission of the Archbold Biological Station is the study of organisms found in these habitats. Several species of ants are apparently restricted to scrub and sandhill environments, and represent the only localized concentration of endemic ants in eastern North America. The following list summarizes our information on scrub and sandhill ants.

- Species occurring in scrub and sandhill: 59
- Species generally restricted to scrub and sandhill at ABS: 10
- Exotic species in scrub and sandhill: 6
- Exotic species restricted to scrub and sandhill: 0
- Scrub and sandhill endemics: 4

The most striking feature of these numbers is the very large number of species that live in scrub and sandhill habitats compared to the number of species restricted to these habitats. We had expected that the harsh environment of scrub and sandhill, with heat, exposure, periodic droughts and fires, would have resulted in a small, tightly structured community of ants showing specific adaptations for a rigorous environment. We ascribe the large number of facultative scrub inhabitants to two factors. One factor is the importance of microhabitat. Even in open, recently burned scrub a dead log or a small accumulation of litter provides cooler and moister refugia for colonies of certain ants, some of which, such as *Camponotus abdominalis floridanus* and *C. tortuganus*, may be abundant and conspicuous scrub inhabitants. The other factor is successional change: after an area has escaped burning for a decade or more it becomes increasingly mesic and suitable for many ants not found in the early stages of the same plant community. A recently burned area, especially the "rosemary bald" (SSr), is dominated by scrub and sandhill obligates.

The species restricted to scrub and sandhill habitats vary in their geographic ranges. Three species, *Pogonomyrmex badius*, *Solenopsis globularia littoralis*, and *Leptothorax texanus davisi*, are widely distributed in sandy habitats through the eastern United States. One species, *Pheidole littoralis* is widespread in well-drained sandy areas in southern Florida, but absent from the rest of the United States. There are 5 species that are apparently endemic to Florida scrub and sandhill: *Conomyrma flavopelta*, *Conomyrma* spp. 1 and 3, *Odontomachus* sp., *Pheidole adrianoi*, and *Paratrechina phantasma*. *Paratrechina wojciki* is endemic to central Florida, but found in a variety of habitats. These species might be analogous to some endemic reptiles, such as *Sceloporus woodii*, *Tantilla relicta*, *Stilostoma extenuatum*, *Rhineura floridana*, and *Neoseps reynoldsi*, whose ancestors probably came from western North America, or from Central America via western North America, before the Pleistocene an became isolated in the xeric uplands of central Florida (Auffenberg 1982). A number of additional species were probably once confined to these xeric upland refugia and spread to other parts of Florida and the southeastern United States in post-glacial times. Probable examples are *Pogonomyrmex badius*, *Solenopsis globularia littoralis*, *Leptothorax texanus davisi*, *Pheidole floridana*, *P. sitarchae littoralis*, *Camponotus abdominalis floridanus*, *C. tortuganus*, *Aphaenogaster floridanus*, and *A. flemingi*. These species
may be historically analogous to the herps *Gopherus polyphemus*, *Ophisaurus compressus*, *Rana aurio*, and *Rhadinaea flavilata* (Boyles 1966).

There are no endemic genera of Florida ants. The closest approach to an endemic genus is *Pogonomyrmex badius*, included above in the list of species probably originating in central Florida uplands. *P. badius* belongs to a distinctive species group that differs from all southwestern *Pogonomyrmex* species in having polymorphic workers (Cole 1968). In contrast, there are 3 endemic Florida genera of herps, all restricted to xeric uplands (Auffenberg 1982). A glance at the representative of these genera dispels any idea that this taxonomic contrast originates in a tendency of herpetologists to define genera more narrowly than do myrmecologists. The dispersal and colonization ability of ants, generally far superior to that of herps, are factors that would decrease the probability of the very protracted isolation required to protect an ancient relict or to permit radical morphological adjustment to better exploit an emergent ecological niche.

Exotic Ants

Between 20 and 24 species of ants on the Archbold Biological Station are not native to Florida. The 4 species whose status is questionable are Neotropical species that may have been introduced before any surveys of Florida ants. The reasons for suspecting these 4 (out of 12 species with West-Indian-Neotropical distribution) are as follows. *Pachycondyla stigma* is a pantropical species (Smith 1979). In 1932 this species, which is very common today, was known only from Lake Worth in Palm Beach County (Wheeler 1982). *P. stigma* was reported from the Archbold Biological Station in 1943 (Schneirla 1944). *Brachymyrmex obscurior* is “possibly introduced” (Smith 1979); at the Archbold Biological Station it inhabits disturbed sites. *Pseudomyrmex simplex* has not been reported from Florida until 1985 (though it might have been confused with *P. pallidus*) and like *P. mexicanus*, may have been recently introduced. The speed with which *P. mexicanus* became completely naturalized throughout Florida at least as far north as Gainesville (Whitcomb et al. 1972), casts vague doubts on the native status of other Florida *Pseudomyrmex* species, especially *P. cubaensis* and *P. elongatus*. There is no good way to establish whether any Florida-Neotropical species are native. Suggestive evidence for exotic origin would be: documentation of rapid range expansion; infraspecific character states linking Florida populations with distant Neotropical populations; restriction to disturbed habitats; flightless queens. It is tempting, in view of the scarcity of West Indian elements in the native herpetofauna (Auffenberg 1982) and scarab fauna (Woodruff 1973), to assume that most Florida-West Indian ants are exotic, but the relatively good colonizing capacity of ants makes independent establishment plausible in most cases.

The 22 verified exotic ants on the Archbold Biological Station vary widely in the extent to which they are restricted to man-modified environments. There are 2 species, *Monomorium pharoanis* and *Paratrechina longicornis*, that are restricted to buildings and adjacent gardens. Species confined to man-modified environments are *Pheidole moerens*, *Cardiocondyla nuda*, *C. venustula*, *C. wroughtonii*, *Monomorium floridana*, *Tetramorium bicarinatum*, *Wasmannia auropunctata*, *Tapinoma melanocephalum*, *Trichospora membranifera*, *Paratrechina bourbonica*, *P. vividula*, and the suspected exotic *Brachymyrmex obscurior*. Species that regularly colonize natural habitats are *Pseudomyrmex mexicanus*, *Hypoeponerura punctatissima*, *Cardiocondyla emeryi*, *Solenopsis invicta*, *Tetramorium simillimum*, *Strumigenys eggersi*, *S. rogeri*, *Quadristruma emmae*, *Cyphomyrmex fuscus* and the suspected exotics *Pachycondyla stigma* and *Pseudomyrmex simplex*.

The relatively large number of exotics in natural habitats can be attributed to several factors. The warmer parts of Florida, isolated as they are from mainland Neotropica,
are truly insular in nature, and the ant fauna is correspondingly depauperate and subject to invasion by tramps. The numerous sea ports with direct traffic between nearby tropical areas provide access to Florida. Finally, the natural habitats of the Archbold Biological Station and of much of southern Florida are subject to frequent natural disturbances in the form of fires and floods which may make these habitats more easily invaded by ants associated with man-made disturbances.

A series of 6 sites that we assume represents a gradient from insular or disturbed sites to mainland or undisturbed sites show a decreasing percentage of exotic ants.

Florida Keys (Wilson 1964): 30.0% exotics (9 spp.)
Archbold Biological Station: 19.6% exotics (20 spp.)
Welaka Reserve (Van Pelt 1958): 10% exotics (7 spp.)
Red Hills (Bhatkar and Whitcomb, unpublished): 9.5% exotics (8 spp.)

In an even more dramatic contrast to the situation in Florida, in a recent survey of the ants of Utah (Allred 1982) only 1 exotic was found among 169 species of ants. It is true that the Utah survey concentrated on rural areas, but the back roads of Florida are literally lined with the nests of exotic ants.

The number of exotic ant species at the Archbold Biological Station is not only large compared with other sites, but is also large relative to the number of exotics in some other groups of insects. Among the Archbold Biological Station butterflies, for example, there is only 1 exotic out of 65 species, among scarabs there are 6 exotics out of 76 species, among bees there is 1 exotic out of 52 species. One possible explanation is that alate female ants are relatively poor long-range dispersers relative to stronger-flying insects, so that subtropical Florida was not saturated with naturally immigrating ants from the Neotropics long before the arrival of humans. A complementary explanation is that ants, while poor dispersers, are excellent colonizers, hence species may frequently become established from a single introduction. Once a single fertile female establishes herself in a suitable habitat her chance of founding a breeding population is good because of the likelihood of mating among her offspring, of which large numbers are concentrated in one place over a period of at least a year. An analogous situation occurs in the beetles of the family Scolytidae. Almost all recently established Florida species are members of the tribe Xyleborini or in the genus Hypothemus; in both these groups sib matings within the parental gallery are the rule (Wood 1977).

The same factors that permit the establishment of an exotic population normally ensure the eventual abundance of that species, but this may not hold throughout the new range of the species, and may change over time. Several exotics are rare at the Archbold Biological Station; these species are Cardiocondyla venustula, C. wroughtonii, Paratrechina vividula, Pheidole moerens, and Trichiocapra membranifera. C. venustula and T. membranifera are the only species we have not found in dense populations elsewhere in Florida.

MISSING ANTS

Several species of ants that might be expected to occur at the Archbold Biological Station have not been found. Dolichoderus pustulatus Mayr occurs in low flatwoods at Welaka (Van Pelt 1958) and in the Everglades (Wheeler 1932), but not at the Archbold Biological Station. Prionopelta antillana Forel is widespread in South America and in the West Indies; a population reported from Juniper Springs in Ocala State Forest (Smith 1979) was still thriving in 1985. The absence of this species from the Archbold Biological Station provides evidence that the Ocala population may be exotic. Neivamyrmex texanus Watkins was found at Lake Wales in 1983; this site is 54 miles north of
the Archbold Biological Station. *Aphaenogaster lamellidens* Mayr is reported from Highlands Co. (Carroll 1975).

Acknowledgments

The work of James Trager at the Archbold Biological Station was supported in part by a grant from the Archbold Biological Station. We would like to thank William Brown, Jr. (Cornell University), and Roy Snelling (Los Angeles Natural History Museum) for identifying specimens of ants. Nancy Deyrup assisted in the collection and preparation of specimens. The manuscript was typed and the tables prepared by Dorothy Carter. James Layne, Fred Lohrer, and Lawrence Battoe (Archbold Biological Station) all provided helpful suggestions for improving the manuscript.

References Cited

