SURVEY OF EVANIID WASPS
(HYMENOPTERA: EVANIIDAE) AND THEIR COCKROACH
HOSTS (BLATTODEA) IN A NATURAL FLORIDA HABITAT

MARK DEYRUP AND THOMAS H. ATKINSON

1Archbold Biological Station
 P.O. Box 2057
 Lake Placid, FL 33852
2Department of Entomology
 University of California
 Riverside, CA 92521

ABSTRACT

Over a 3-year period 1,850 evaniids, representing four species, were collected in a
mature sand pine habitat at the Archbold Biological Station in south-central Florida.
All species fly for at least six months of the year and show annual fluctuations in
abundance. Seventeen species of cockroaches occur at the ABS; the most probable hosts
for evaniids are members of the genera Parcoblatta, Ischnoptera, and Cariblatta.

Key Words: Parasitoids, ecology, behavior, population density.

RESUMEN

Durante un periodo de 3 años, 1,359 evaniídos, representando 4 especies, se colecta-
ron en un habitat de pino de arena en la Estación Biológica Archbold (EBA) en el centro
de la Florida. Todas las especies vuelan durante por lo menos 6 meses del año y muestran
fluctuaciones anuales en abundancia. Dieciséis especies de cucarachas ocurren en la
EBA. Las hospederas probables de los evaniídos son miembros de los generos Parcob-
latta, Ischnoptera y Cariblatta.

Evaniiid wasps are a small group of specialized solitary parasitoids, living only in
egg cases of cockroaches. What little is known about host relationships (see Townes
1949, Roth & Willis 1960) suggests that each species of evaniid is specialized to attack
egg cases of a particular size, sometimes those of a genus or closely related genera of
cockroaches. This is not surprising, as different cockroaches deposit their egg cases in
different situations, and the egg cases themselves differ in size and structure. It is
difficult to get direct information on hosts and general ecology of evaniids because they
breed in deliberately concealed hosts, and they are inconspicuous insects that spend much of their time crawling about in dense vegetation. A survey of cockroaches and evaniids, combined with a study of seasonal flight patterns of the latter, has provided new biological information, including indirect information on hosts.

MATERIALS AND METHODS

The study site is on the Archbold Biological Station (Highlands County), located at the southern end of the Lake Wales Ridge in south-central Florida. The site is in a transitional zone between warm and subtropical zones. Winters are mild and dry, with temperatures during some years falling below 0°C for a few hours. Sheltered microhabitats are frost-free. Summers are warm and humid, with daytime temperatures over 25°C.

The vegetation of the study site is a thin canopy of sand pine (*Pinus clausa* Chapman), with a thick 1.5-3.5 m understorey of scrub oaks (*Quercus* spp.), staggerbush (*Lyonia* spp.), silk bay (*Persea humilis* Nash), scrub pawpaw (*Asimina obtisia* Nash), and scrub hickory (*Carya floridana* Sargent). The paths through this thick brush appeared to act as flight corridors for insects.

Evaniiids were collected in 2 small Townes traps (Townes 1972) that were set up across 2 east-west paths. The traps were kept in place and continuously monitored from May 1983 through December 1986. Each trap was annually replaced with an identical trap to forestall the effects of wear. Specimens were collected 3 times a week. Cockroaches were collected by Townes traps, pitfall traps and searching litter, rotten wood, and under bark. The evaniids and cockroaches were identified by the authors. Specimens of all species are in the collection of the Archbold Biological Station.

RESULTS AND DISCUSSION

In the seasonal flight study, we collected 1,359 evaniid specimens, representing the species *Eviuniella semaeoda* Bradley, *Hyptia floridana* Ashmead, *H. reticulata* (Say), and *H. thomsoni* (Blanchard). The numerical results are summarized in Fig. 1. From these results we infer the following:

1. Every species has a flight period extending over at least seven months. These flight periods are all longer than those reported by Townes (1949), and imply that hosts are breeding over much of the year.
2. There is no evidence of niche partitioning on the basis of seasonality.
3. The time required for development is not known for any of the four evaniid species. For the introduced peridomestic evaniid *Proevania punctata* (Brullé) developmental time ranges from 40-127 days (Roth & Willis 1960). Considering the warm temperatures in the study site between April and October, it seems likely that all species would have time for more than one generation within the flight period, the latter presumably synchronized with host availability.
4. There appear to be notable variations in abundance and seasonality from year to year. This is best seen in *H. reticulata* and *H. thoracica*, which were collected in relatively large numbers.

The survey of cockroaches is presented in Table 1. From the combined surveys of cockroaches and evaniids we can infer the following.

1. The exotic *Evania appendigaster* (L.), which attacks *Periplaneta* spp. in Florida (Stange 1978), was not collected in our traps; *Periplaneta* spp. at the
Archbold Biological Station seem confined to disturbed areas near buildings.

2. There is no evaniid big enough to be associated with Eurytus floridanus (Walker), unless there is a species that consumes only part of the eggs in an egg case.

3. Small cockroaches whose egg cases might be appropriate for Hyptia floridanus are Cariblatta lutea (Sauvage & Zehntner), C. minima Hebard, and possibly the small cockroaches Compsodes cucullatus (Sauvage & Zehntner), Euthlato blatta gemma Hebard, and Chorisoneura texensis (Sauvage & Zehntner). Our impression is that individuals of Cariblatta spp. vastly outnumber all other possible hosts. It seems highly likely that C. lutea is the principle host of H. floridanus.

4. For Evarrella semaeoda, Hyptia reticulata, and H. thoracica, plausible hosts are Parabolatta fulvescens (Sauvage & Zehntner), Latiblatella rhini, Ischnoptera deropeltiformis (Brunner), and just possibly Arenivaflorida sensis Caudell; the latter is a burrowing species that probably buries its eggs deep in the sand. All three of these medium-sized evaniids occur far north of Florida, in areas where Parabolatta and Ischnoptera species are the only possible hosts (Carlson 1979). H. thoracica and H. reticulata are known to parasitize Parabolatta pensylvanica (DeGeer) (Roth & Willis 1960). Parabolatta fulvescens is abundant at the study site. We reared a specimen of E. semaeoda from an ootheca of I. deropeltiformis found in deep pine litter in south Florida.

5. The diversity of cockroach genera, both native and exotic species, is greater in southern Florida than elsewhere in the Southeast (Atkinson et al. 1991).
TABLE 1. SPECIES OF COCKROACHES PRESENT AT STUDY SITE AND DIMENSIONS OF OTHECA.

<table>
<thead>
<tr>
<th>Family</th>
<th>Species</th>
<th>Length of Ootheca</th>
<th>Height of Ootheca</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blattidae</td>
<td>Eurygastia floridana</td>
<td>16.9 ± .28</td>
<td>7.4 ± .09</td>
<td>25^1</td>
</tr>
<tr>
<td></td>
<td>Periplaneta americana</td>
<td>9.0 ± .13</td>
<td>5.5 ± .05</td>
<td>25^1</td>
</tr>
<tr>
<td></td>
<td>P. australasia^6</td>
<td>1.5</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>Polyphagidae</td>
<td>Areivaga floridensis</td>
<td>7.9 ± .14</td>
<td>3.8 ± .08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compsodes eucaltatus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mymecoblatta wheeleri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blattellidae</td>
<td>Euthoblatta yemnus</td>
<td>3.9</td>
<td>2.3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Blattella germanica^5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cariblatta lutea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. minima</td>
<td>3.3 ± .04</td>
<td>2.0 ± .03</td>
<td>20^1</td>
</tr>
<tr>
<td></td>
<td>Chorioneura texensis^a</td>
<td>3.4</td>
<td>2.1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ischnoptera deropeltiformis</td>
<td>7.4 ± .19</td>
<td>4.0 ± .06</td>
<td>5^1</td>
</tr>
<tr>
<td></td>
<td>I. bilunata</td>
<td>8.0 ± .38</td>
<td>3.2 ± .05</td>
<td>23^1</td>
</tr>
<tr>
<td></td>
<td>Latiblatta rehni</td>
<td>7.2 ± .09</td>
<td>3.0 ± .03</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Parcoblatta fulvescens</td>
<td>6.3 ± .09</td>
<td>3.4 ± .03</td>
<td>3^1</td>
</tr>
<tr>
<td>Blaberidae</td>
<td>Panchlorora nivea^a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pyenoseius surinamensis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^1Based on ootheca produced by adults collected in the field by T. H. Atkinson, May-June 1990, Gainesville, FL.
^2Based on laboratory colony from Alachua & Levy counties.
^3Found in ant nests.
^4Based on single ootheca protruding from abdomen of female with following collection data: Georgia, 6 mi NE Leesburg, 7-X1-63, W. Glover (USNM).
^5Ootheca carried by female.
^6Based on single ootheca with following collection data: NC, Nag's Head, NH 26, K. V. Krombein (USNM).
^7Florida, Archbold Biological Station, 13-14-V-30, Weems & Hohren (FCSA); Florida, Gainesville, 7-V1-61, H. V. Weems (FCSA).
^8Ootheca carried internally until hatched.

In spite of this, there is not a greater number of species of evaniids in Florida, and no species is confined to Florida. On the other hand, there are at least six southeastern species of *Parcoblatta* that do not occur in south Florida (Atkinson et al. 1990) and only one additional evaniid, *Hyptia karpyodes* Bradley, within the range of these species. In other words, cockroach diversity in the Southeast is in no way correlated with evaniid diversity. The distribution of the six native evaniids could be explained by the distribution of the genera *Parcoblatta*, *Ischnoptera* and *Cariblatta*.

ACKNOWLEDGMENTS

Nancy Deyerup prepared the graphs of flight activity, and Marcia Moretto typed the manuscript.

REFERENCES CITED

FIELD TEST OF MOSQUITO OVIPOSITIONAL CUES FROM VENEZUELAN PHYTOTELMATA

L. F. LOUNIBOS and C. E. MACHADO-ALLISON

1University of Florida, Florida Medical Entomology Laboratory, 200 5th St. SE, Vero Beach, FL 32962
2Instituto de Zoologia Tropical, Universidad Central de Venezuela, Apartado 47058, Caracas 1040A, Venezuela

ABSTRACT

Fluids held by four phytotelmata were compared for oviposition by mosquitoes in lowland rainforest in eastern Venezuela. Significantly more Wyeomyia ulocoma and Culex pleuristriatus were recovered in fluid from bracts of Heliconia caribea, than in fluids collected from axils of Aechmea bromeliads, the aroid Alocasia macrorrhiza, or internodes of Bambusa vulgaris. Wyeomyia ulocoma, whose immature stages occur uniquely in Heliconia bracts, was more specific to H. caribaea fluid than was the phytotelm generalist C. pleuristriatus. No preferences for oviposition site color were detected.

Key Words: Diptera, fluids, culex, Wyeomyia, Heliconia.

RESUMEN

Fluidos retenidos por cuatro fitotelmatas fueron comparados en una selva lluviosa de tierra baja en el oriente de Venezuela con respecto a la frecuencia de oviposición por mosquitos. Significativamente más Wyeomyia ulocoma y Culex pleuristriatus fueron colectados en el fluido de las brácteas de Heliconia caribea que en los fluidos de las axiás de bromeliad del género Aechmea, de las axiás de Alocasia macrorrhiza, o de los internodos del bambú Bambusa vulgaris. La W. ulocoma, cuales estados...