INSECTS, COFFEE AND OCHRATOXIN A

FERNANDO E. VEGA AND GUY MERCADIER
European Biological Control Laboratory, United States Department of Agriculture
Agricultural Research Service, Parc Scientifique Agropolis II, 34397 Montpellier
Cedex 5, FRANCE

A problem with coffee consumption is the possible presence of ochratoxin A, a potent toxin produced by *Aspergillus ochraceus* Wilh. and *Penicillium viridicatum* Westl. Several studies have demonstrated the presence of this toxin in green coffee beans, roasted coffee, and coffee brews, including instant coffee (Levi et al. 1974, Tsubochi et al., 1984, Micco et al. 1989, Studer-Rohr et al. 1994, Patel et al. 1997). In the UK, out of 100 retail coffee samples tested for ochratoxin A, 81 tested positive (Patel et al. 1997). Coffee exported from Brazil to Greece and Lebanon must be tested for ochratoxin A and levels must be below 20 mg/kg (Milanez et al. 1995). After collecting coffee beans infected with the coffee berry borer (*Hypothenemus hampei* (Ferrari), Coleoptera: Scolytidae) in Uganda and Benin, as part of a project aimed at finding new biological control agents against this insect pest, we isolated *A. ochraceus* from adult insects emerging from the beans. In Uganda, of 636 insects emerging from coffee beans collected in 26 sites, 34 (5.3%) were infected with *A. ochraceus*. In Benin, out of 564 insects originating in one site, 98 (17.4%) were infected with *A. ochraceus*. *H. hampei* females lay eggs inside the coffee bean where both larval development and mating occur. If the mother is infected with *A. ochraceus* while entering the bean, it is likely that the adult progeny leaving the bean will also be infected, thereby disseminating the fungus. This insect, endemic to Africa, has now spread to most coffee growing regions in the world; therefore, its potential to serve as a vector for this cosmopolitan fungus is high. Other insects are known to serve as vectors for toxigenic fungi, including *Aspergillus flavus* Link: Fr. to corn (Dowd 1998). Our finding indicates that *H. hampei*, in addition to being a direct pest of coffee, could also serve as a vector for *A. ochraceus*. Plans aimed at reducing ochratoxin contamination in coffee beans should take into consideration the presence of this insect in the field.

We are grateful to E. Rosenquist (Office of International Research Programs, USDA) for sponsoring this work, to C. Lomer (IITA, Benin) for sending coffee beans and P. F. Dowd (USDA) for comments on the manuscript.

SUMMARY

A search for natural enemies of the coffee berry borer *Hypothenemus hampei* (Ferrari) (Coleoptera: Scolytidae) in Uganda and Benin revealed that the insect serves as a carrier for *Aspergillus ochraceus* K. Wilh., a fungus known to produce ochratoxin A. Contamination with this toxin is a serious problem for the coffee industry. Plans aimed at reducing this problem should take into consideration the presence of this insect in the field.

REFERENCES CITED

REDISCOVERY OF A SPRINGTAIL AND A GRASSHOPPER IN FLORIDA
Krista E. M. Galley
1 and R. Wills Flowers
2
1 Longleaf Pine Restoration Project, The Nature Conservancy, P.O. Box 875, Niceville, FL 32588
2 Agricultural Research Programs, Florida A&M University, Tallahassee, FL 32307

Ecosystem management programs of the U.S. Forest Service (Hermann et al., in press) and a cooperative agreement between The Nature Conservancy and the Department of Defense have promoted study of the increasingly rare longleaf pine (Pinus palustris) ecosystem (Biondo 1997) and the arthropods inhabiting it. In the Florida Panhandle, two research projects on longleaf pine restoration ecology have led to the rediscovery in Florida of the springtail Sminthurus floridanus MacGillivray (Collembola: Sminthuridae) and the grasshopper Gymnoscirtetes morsei Hebard (Orthoptera: Acrididae). Both species have been searched for in Florida in recent years without success. S. floridanus was described from one specimen collected in “Florida” (MacGillivray 1893). This species was known from that single specimen until Snider (1982) redescribed S. floridanus from several series collected at the Savannah River Plant, Aiken, South Carolina. These series were swept from roadside grass beneath tall loblolly pines. In 1995-1997, S. floridanus was collected on Eglin Air Force Base (EAFB) in northwest Florida. All specimens were taken in an area subject to frequent fires, characterized by a nearly pure stand of longleaf pine, a sparse hardwood midstory, and a dense groundcover of grasses and forbs, including bluestems (Andropogon spp. and Schizachyrium spp.), low panic grasses (Dichanthelium spp.), pineywoods dropseed (Sporobolus junceus), and wiregrass (Aristida beyrichiana). Collection data are: Florida, Okaloosa Co., Eglin Air Force Base, T1S-R25W-sec. 30, 31-V-1995, 21-IX-1995, 01-VI-1996, 16-VI-1997, D-Vac and sweep net, 70% EtOH, Longleaf Pine Restoration Project, Site 2C-W.