A NEW PEST OF RICE IN MISSOURI: RANGE EXPANSION OF TRIOPS LONGICAUDATUS (CRUSTACEA: NOTOSTRACA: TRIOPSIDAE) INTO THE NORTHERN MISSISSIPPI RIVER ALLUVIAL PLAINS

K. V. Tindall1, K. Fothergill2, W. Minson3 and B. Ottis4

1University of Missouri, Division of Plant Sciences, Delta Research Center, P.O. Box 160, Portageville, MO 63873

2Conservation Seeding and Restoration, Inc. 506 Center Street West, Kimberly, ID 83341 U.S.A

3Bootheel Crop Consultants, 16000 County Road 624, Dexter, MO, 63841

4RiceTec, Inc., P.O. Box 17396, Jonesboro, AR 72403

Tadpole shrimp, Triops longicaudatus (LeConte) (Notostraca: Triopsidae), are pests in California rice production systems. Tadpole shrimp are an obligate species of ephemeral freshwater aquatic habitats and in North America were considered primarily a species of the western United State for many years. Taylor et al. (1987) reported an eastward range expansion into Oklahoma. Tadpole shrimp were not known to be in Missouri until 1979 when a report was filed with the Missouri Department of Conservation. There were 2 more records filed in 1983 and 2007. Early reports were along the Missouri River with the 1979 and 1983 reports being from Jackass Bend (Jackson County) and the 2007 record from Darst Bottoms (St. Charles County) (Dorothy Butler, personal communication). Additional populations of tadpole shrimp have been found in 2009 on the Arkansas/Missouri state line north of Gosnall, AR in Missouri (Dunklin County) and near Luxora, AR (Mississippi County).

How tadpole shrimp came to be in Missouri is unknown, but dispersal occurs via floodwaters (Taylor et al. 1987), wind (Cáceres & Soluk 2002; Nathan et al. 2005; Graham & Wirth 2008), birds (Green & Figuerola 2005), and via the pet trade (Halliday 2008).

On June 8, 2007, a single specimen of an unknown invertebrate was brought to the Delta Research Center in Portageville, Missouri (Pemiscot County) for identification. The specimen was collected from a drill-seeded rice field in Pemiscot County (near Bakerville). The specimen was determined to be a tadpole shrimp but the species was not determined. Growers were alerted of its presence in the state at winter meetings.

On May 20, 2008, a phone call was received about a 16-hectare field in Stoddard County (located north and west of Catron), of water-seeded hybrid rice that had not emerged. The water was drained from the field and thousands of tadpole shrimp were congregated in the remaining puddles. No viable seeds were present and the field was replanted (Ottis, personal observation). On June 2, 2008, another call was received about multiple fields in New Madrid County (near Lilbourn) that were infested. At least 1600 hectares had tadpole shrimp present and of those infested, nearly 800 hectares were economically impacted and approximately 40 hectares were replanted (Minson, personal observation).

Specimens collected from both locations in 2008 were yellow-brown in color and ≤5 cm in length. The carapace covered slightly less than the anterior half of the animal. Numerous appendages were present on the thorax and abdomen. Two close-together, sessile, compound eyes with a simple eye in between were located on the head. There were >35 body segments. Two tails extended from the telson. The taxonomic treatment of Longhurst (1955) recognizes T. longicaudatus as the only North American Triops species and on the basis of this treatment, specimens were identified as T. longicaudatus. However, this taxonomy may not be supported as new techniques reveal genetic differences due to reproductive isolation (Sassaman et al. 1997).

Tadpole shrimp females lay an average of 81 eggs in 24 h; however, 1 individual laid 198 eggs (594 eggs/3 d) (Scott 1972). Eggs are laid on either decaying or living plant material, algae, or in the soil. Egg hatch is affected by pH (Scott 1972; Hamasaki & Ohbayashi 2000), soil type, age of egg (Su & Mulla 2002), temperature (Scott 1972), salinity (Horne 1967; Scott 1972) and depth of burial in the soil (Scott 1972). Eggs require a desiccation period prior to hatching (Fry & Mulla 1992). When a larva ecoloses, it feeds on diatoms and protozoa in the mud (Longhurst 1955) during early instars. Then it acquires feeding behaviors similar to that of the adult, which consumes vegetative material and aquatic invertebrates (Walton et al. 1991) and is cannibalistic (Scott 1972). The foraging behavior (i.e., movement in the mud) of nearly mature and adult tadpole shrimp uproots small seedlings and muddies the water. Larval development is influenced by temperature; although individuals reared at 30°C were smaller than those reared at lower temperature, they reached sexual maturity at an earlier age (Fry-O’Brien & Mulla 1996).

Tadpole shrimp are problematic in California water-seeded rice production systems when larvae ecolose after fields are flooded. Sexually ma-
ture tadpole shrimp are found as early as 9-12
days after floods are established (Scott 1972);
therefore, rice plants have <9 days to break the
surface of the flood (i.e., the time at which rice is
no longer vulnerable), before tadpole shrimp are
large enough to uproot seedling rice (Godfrey
2005). Rice planted by drill-seeded or dry-seeded
methods has an adequate root system when fields
are flooded, and tadpole shrimp are not pests in
these systems. Once rice is no longer vulnerable
to tadpole shrimp damage, tadpole shrimp may
serve as a biological control agent for mosquitoes
(Fry et al. 1994) and/or weeds (Takahashi 1977;
Yonekuru 1979).

Hybrid rice varieties are planted at a lower
seeding rate (33-45 kg/ha) than conventional va-
rieties (100-120 kg/ha), making them more sus-
cceptible to tadpole shrimp damage than higher
seeding rates. For example, losing 10% of a stand
planted at 33 kg/ha is more detrimental than los-
ing 10% of a stand planted at 110 kg/ha.

Southeastern Missouri is part of the Missis-
sippi Alluvial Plain (USGS 2003). Historically, the
region was covered with swamp lands and heavy
timber (Nolen 1912), but much of which is now
croplands. These croplands include rice fields that
mimic ephemeral ponds inhabited by tadpole
shrimp. In 2008, <10% of the 80,000 hectares of
rice production in Missouri was water seeded.
Therefore, tadpole shrimp will impact only a
small percentage of hectares in Missouri. How-
ever, rice production also occurs on almost
757,000 ha in the Mississippi Alluvial Plain
states of Arkansas and Louisiana (NASS 2008),
and the percentage of water-seeded rice varies
each year, with many hectares of water-seeded
rice in those states that could be impacted if there
is further dispersal southward.

SUMMARY

In North America, tadpole shrimp, Triops lon-
gicaudatus, are pests of water-seeded rice produc-
tion in California. In 2008, tadpole shrimp were
documented to be a pest of rice of water-seeded
rice in Missouri for the first time. This occurrence
represents a range expansion into a new physio-
graphic region (Mississippi Alluvial Plain) and
the Southern U.S. rice producing region. A brief
review of the biology and implications of this pest
are described.

REFERENCES CITED

wind: a field test of overland dispersal and coloniza-
ton by aquatic invertebrates. Oecologia 131:402-
408.

FRY, L. L., AND MULLA, M. S. 1992. Effect of drying and
soil moisture on egg hatch of the tadpole shrimp (No-

FRY, L. L., MULLA, M. S., AND ADAMS, C. W. 1994. Field
introductions and establishment of the tadpole
shrimp, Triops longicaudatus (Notostraca, Triops-
idae), a biological-control agent of mosquitoes. Biol.
Control 4: 113-124.

FRY ’ O’BRIEN, L. L., AND MULLA, M. S. 1996. Optimal
conditions for rearing the tadpole shrimp, Triops
longicaudatus (Notostraca: Triopsidae), a biological
control agent against mosquitoes. J. American Mos-
quito Contr. 12: 446-453.

GODFREY, L. D. 2005. Rice Tadpole Shrimp, University of
California IPM Pest Management Guidelines: Rice.
UC ANR Publication 3465 Invertebrates.http://
/www.ipm.ucdavis.edu/PMG/r682500111.ht-

GRAHAM, T. B., AND WIRTH, D. 2008. Dispersal of large
branchiopod cysts: potential movement by wind
from potholes on the Colorado Plateau. Hydrobiolo-
gia 600: 17-27.

GREEN, A. J., AND FIGUEROA, J. 2005. Recent advances
in the study of long-distance dispersal of aquatic in-
vertebrates via birds. Diversity and Distributions
11:2, 149-156.

HALLIDAY, S. 2008. MyTriops. Available at http://mytri-

HAMA SAKI, K., AND OHBAYASHI, N. 2000. Effect of water
pH on the survival rate of larvae of the American
tadpole shrimp, Triops longicaudatus (LeConte) (No-
tostraca: Triopsidae). Appl. Entomol. Zool. 35: 225-
230.

HORNE, F. R. 1967. Effects of physio-chemical factors on
the distribution and occurrence of some southeast-


NATHAN, R., SAPIR, N., TRAKITENBBOT, A., KATUL, G.
G., BOHRER, G., OTTE, M., AVISSAR, R., SOONS, M. B.,
Long-distance biological transport processes
through the air: can nature’s complexity be unfolded

NATIONAL AGRICULTURE STATISTICS SERVICE (NASS).
18 December 2008.

NOLEN, J. H. 1912. Missouri’s Swamp and Overflowed
Lands and Their Reclamation. The Hugh Stephens

Reproductive isolation and genetic differentiation in
North American species of Triops (Crustacea: Bran-

SCOTT, S. R. 1972. Laboratory and field studies of Triops
longicaudatus (LeConte) in California. M.S. Thesis,
University of California, Davis.

SU, T. Y., AND MULLA, M. S. 2002. Spatial occurrence
and hatch of field eggs of the tadpole shrimp Triops
newberryi (Notostraca: Triopsidae), a potential bio-
logical control agent of immature mosquitoes. J. Vec-
tor Ecol. 27: 128-137.

Takahashi, F. 1977. Triops spp. (Notostraca: Triops-
idae) for the biological control agents of weeds in

Taylor, C. M., BRYANT, R. M., JR., AND HARTMAN, R. E.
1987. Eastward range extension of the tadpole
shrimp, Triops longicaudatus (Leconte), in Oklaho-
