Supplementary Material FE 99.3

An evaluation of plant genotypes for rearing Asian citrus psyllid, *Diaphorina citri* (Hemiptera: Liviidae)

David G. Hall and Matthew G. Hentz
United States Department of Agriculture, Agricultural Research Service, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL 34945

Supplemental Figures

Page 2: **Suppl. Fig. 1.** Air temperatures in the greenhouse during the 2012 experiments on genotype growth, architecture and flush production.

Page 2: **Suppl. Fig. 2.** Plant height during the 2012 experiment on genotype growth, architecture and flush production.

Page 3: **Suppl. Fig. 3.** Mean number per plant of flush shoots suitable for oviposition by Asian citrus psyllid after plants were trimmed on December 1, 2012.

Page 4: **Suppl. Fig. 4.** Air temperatures in the greenhouse during the 2013 experiments on genotype growth, architecture and flush production.

Page 5: **Suppl. Fig. 5.** Mean number per plant of flush shoots suitable for oviposition by Asian citrus psyllid after plants were trimmed on September 10, 2013.

Page 6: **Suppl. Fig. 6.** Air temperatures during the winter 2015 experiments on production of Asian citrus psyllid on different plant genotypes.

Page 6: **Suppl. Fig. 7.** Air temperatures during the spring 2015 experiments on production of Asian citrus psyllid on different plant genotypes.

Page 6: **Suppl. Fig. 8.** Air temperatures during the summer 2015 experiments on production of Asian citrus psyllid on different plant genotypes.

Page 7: **Suppl. Fig. 9.** Numbers of adult Asian citrus psyllid emerging per day, and cumulative percent emergence, during a generation developing on different plant genotypes in winter 2015.

Page 8: **Suppl. Fig. 10.** Numbers of male and female Asian citrus psyllids emerging per day, and cumulative percent emergence of adults, during a generation developing on different plant genotypes in spring 2015.

Page 9: **Suppl. Fig. 11.** Numbers of male and female Asian citrus psyllids emerging per day, and cumulative percent emergence of adults, during a generation developing on different plant genotypes in summer 2015.
Suppl. Fig. 1. Air temperatures in the greenhouse during the 2012 experiments on genotype growth, architecture and flush production.

Suppl. Fig. 2. Plant height (mean ± SEM) during the 2012 experiment on genotype growth, architecture and flush production.
Suppl. Fig. 3. Mean ± SEM number per plant of flush shoots suitable for oviposition by Asian citrus psyllid after plants were trimmed on December 1, 2012. One of the original three *C. aurantiifolia* plants died before being trimmed a second time.
Suppl. Fig. 4. Air temperatures in the greenhouse during the 2013 experiments on genotype growth, architecture and flush production. Temperature data from 28 July through 1 October had to be taken from a different logger located in a different location; average daily temperatures based on this second logger appeared reasonably similar to preceding data from the first logger, but daily maximum temperatures were noticeably lower and minimum temperatures noticeably higher. Regression results from the first logger on the relationship between average daily temperature (X) and maximum temperatures (Y1) (Y1=7.57+1.0747*X, $r^2 = 0.28$, $F_{1,155}=59.6$, $P=<0.0001$), and between average daily temperature and minimum temperatures (Y2) (Y2=12.277+0.40501*X, $r^2 = 0.11$, $F_{1,155}=19.4$, $P=<0.0001$), were used to estimate maximum and minimum temperatures from 28 July through 1 October.
Suppl. Fig. 5. Mean ± SEM number per plant of flush shoots suitable for oviposition by Asian citrus psyllid after plants were trimmed on 10 September, 2013. Data shown are for plants not subjected to any pruning before they were trimmed.
Suppl. Fig. 6. Air temperatures during the winter 2015 experiments on production of Asian citrus psyllid on different plant genotypes.

Suppl. Fig. 7. Air temperatures during the spring 2015 experiments on production of Asian citrus psyllid on different plant genotypes.

Suppl. Fig. 8. Air temperatures during the summer 2015 experiments on production of Asian citrus psyllid on different plant genotypes.
Suppl. Fig. 9. Mean ± SEM numbers of adult Asian citrus psyllid emerging per day, and cumulative percent emergence, during a generation developing on different plant genotypes in winter 2015.
Suppl. Fig. 10. Mean ± SEM numbers of male and female Asian citrus psyllids emerging per day, and cumulative percent emergence of adults, during a generation developing on different plant genotypes in spring 2015.
Suppl. Fig. 11. Mean ± SEM numbers of male and female Asian citrus psyllids emerging per day, and cumulative percent emergence of adults, during a generation developing on different plant genotypes in summer 2015.