Action Threshold Treatment Regimens for Red Spider Mite (Acari: Tetranychidae) and Tomato Fruitworm (Lepidoptera: Noctuidae) on Tomato

Gadi V. P. Reddy, Khanobporn Tangtrakulwanich

Abstract


The tomato fruitworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), is the foremost pest of tomato in the Mariana Islands. Similarly, the red spider mite, Tetranychus marianae McGregor (Acari: Tetranychidae), is a chief pest of vegetables particularly on tomato, Solanum lycopersicum L. (Solanaceae). However, the infestations by T. marianae are heavy during the early stages of crop growth, while infestations of H. armigera become prominent at later stages. Because no threshold levels are available for these pests, many growers apply up to 15 chemical applications per tomato cropping period. To reduce the regular spray schedules chemical applications and to prevent damage to foliage and fruit quality, the present study was undertaken for the development of action threshold levels for the timing of chemical applications for T. marianae and H. armigera on tomato in the Mariana Islands. Therefore, different threshold levels were evaluated for timing applications of Sun-spray 6E® horticultural oil against T. marianae and Aza-Direct®, neem against H. armigera on tomato in the wet and dry seasons at 2 locations, Dededo and Inaranjan, in Guam, USA during 2011 and 2012. Based on T. marianae infested leaves, incidence of T. marianae and yield levels, the plots sprayed at 8–12 mites/leaf in the dry season and 8–14 mites/leaf during the wet season had significantly lower leaf damage and T. marianae densities compared to a greater number of mites/leaf, regular based sprays and control plots. Likewise, an initial spray scheduled when 2 eggs of H. armigera were detected on 10 of the samples, followed by an added spray only if 2 damaged fruit or H. armigera larvae were detected per 50 immature fruit resulted in lower percent fruit damage and higher marketable yield compared to other threshold levels or a regular spray schedule.

View this article in BioOne

Full Text:

PDF