BUTTERFLIES OF THE HUNZA REGION, NORTHERN PAKISTAN, AND ADJACENT AFGHANISTAN

DAVID SPENCER SMITH, GULAM NASEER, ZSOLT BÁLINT AND S. AZHAR HASAN

ABSTRACT.—The virtually unknown butterfly fauna of the western Karakoram, centered on the Hunza Valley, with extremely difficult terrain and with precipitous mountain slopes and many peaks of 20,000 ft and above, was studied from 1994 to 2000. Field work in July and/or August from 1994 to 2000 on butterflies was carried out in 24 localities along the Karakoram Highway (KKH), from Gilgit to the border with China (Khunjerab Pass), plus side valleys, with particular attention paid to high altitude sites over 13,000 ft. The interface between Palearctic and Oriental faunistic zones was defined. Khunjerab Pass was worked several times on each visit; other high altitude sites assessed including Mintaka and Kilik passes to China and the Ishrad Uwin and Dilsun passes to Wakhan, Afghanistan. Several high altitude species, particularly of the genera Parnassius, Colias, Karanasa, Melitaea, Sipora, Polyommatus, and Euphydryas, were not found below 15,000 ft. Records from these four passes broke new ground since they lie in territory off-limits for over half a century until 1999. Three visits were made to the Deosai Plateau, Baltistan, 150 miles SSE of Hunza and isolated from it by high mountains and extensive glaciers. A total of 109 butterfly species were recorded from the Hunza complex and Deosai combined; and, of the Deosai fauna of 28 taxa recorded, 9 (32%) diverged from the Hunza fauna. Altitudinal distributions for each species were tabulated. Forty species were recorded from a single foray into Wakhan (NE Afghanistan): 11 (27.5%) of these were never found in seven years' work in Hunza, underlining the sharpness of the distinction between Karakoram and Pamir faunas across a very short distance. Preliminary lists of angiosperm plants for Khunjerab Pass and the approach to Kilik Pass are presented. Actual and potential habitat degradation by over-grazing at high altitude was assessed, at worst, as severe. All records obtained will serve as reference points for future studies on butterflies of this region of the Karakoram.

The Karakoram range of northern Pakistan, sometimes termed the Western Himalaya, lies at the junction of four other of the highest ranges of Central Asia. To the southeast the Karakoram Mountains are contiguous with the Great Himalaya, and to the northeast extend the Kun Lun Shan defining the northern boundary of the Tibetan plateau. To the southwest lies the Hindu Kush Range, largely in Afghanistan but extending into northwest Pakistan, and to the north the Pamir Range of Tajikistan and Kirgizstan, bordering Sinkiang (Xinjiang), westernmost China, with the Alai Range north of the Pamirs. The Karakoram includes the world's greatest concentration of high peaks: of the several hundred in the range, about 100 exceed 20,000 ft (Qamar, 1975), dissecting the region into an extremely complex system of valleys, many with glaciers (see Map 1 and 6).

Introduction to Field Studies

The following brief geological account was provided by Dr. Taseer Hussain (Howard University, Washington D.C.) and Mr. Kanwar Sabir Ali Khan (Deputy Director, Geological Survey of Pakistan, Karachi), both of whom accompanied part of the Hunza 2000 expedition. The Karakoram mountains are young and are in the early stages of erosion. As stressed repeatedly in this account, the region is arid, with very little rain/snowfall. The annual precipitation is on average only 100 mm (4+ inches) and it is obvious that this low level cannot have formed the immense glaciers of the Karakoram. These were undoubtedly formed during the Quaternary Ice Age (Wadia, 1961).

The geology is characterized by Cretaceous-Tertiary granitic belts, intercalated by metasedimentary rocks and meta-volcanic complexes, the former probably deposited during the early Palaeozoic to Mesozoic era. The recent Pleistocene to Holocene sedimentation consists of streambed deposits, flood plain terraces, gravel fans and fluviolacustrine deposits (Khan et al., 1987). The youngest geological formations are in the south and the oldest in the north, and their contacts are mostly tectonic (Desio and Martina, 1972). The Karakoram is one of the world's most extensively glaciated areas outside the polar regions. It has seven major glaciers covering an area of 350 mi²; two of the largest are the Hispar and Batura glaciers of the Hunza Valley, each c.38 miles in length. Glacio-geomorphological evidence shows that at least three glaciations occurred in the drainage area of the Batura Glacier during the Pleistocene, while since the last glacial epoch of late Pleistocene the amplitude of glacial oscillations has been smaller. This can be seen from the geological evidence that the ancient Batura Glacier of the late Pleistocene was 1.5 times larger than today, with the snow line lower by about 3000 ft (Xiansong et al., 1980). Late in the Pleistocene, c.25,000 Y.B.P., glacial cover extended almost as far south as present day Islamabad, and since then, the valleys of the Hunza complex have become gradually free of ice, permanently retained only on the high peaks and glaciers. Climatic fluctuations are even traceable during the recent past: about 200 Y.B.P., five canals built by residents of Pasu village, Gojal (see Fig. 6) as far back as 350 Y.B.P. were submerged by lateral moraines of an advancing glacier (Weyning, 1980). Later, the glacier retreated and at present there is no evidence of glacial advance.
Map 2. Sketch-map of the Karakoram Highway from Gilgit to Khunjerab Pass, with the positions of Mintaka, Kilik, Irshad Uwin and Dilsun passes indicated. The area north of Sost, including the tracks to these passes, is shown in more detail in following maps. Numbering of localities worked during this survey given on pages 7-11 corresponds to numerals on the map. NOTE: the entire Hunza region is now included in the Gilgit District, though the traditional areas of Gilgit, Hunza, Nagar and Gojal (Upper Hunza) are still in everyday use. Other Districts bordering Gilgit District are Ghizer to the west, Diamar to the south and Skardu to the southeast.
The gradual opening of the valleys of the Karakoram provided access to butterflies, access which ultimately favored northern forms at higher altitudes, while the present glaciers, together with the very high mountains adjoining them, contribute largely to the isolation which is a major contributor to radiation and genetic divergence in the Karakoram and other extreme mountainous regions of Central Asia.

The entire region of Hunza is now included in the District of Gilgit. Formerly, it formed part of the much larger 'Gilgit Agency' (Map 3, p. 8). The Hunza region is divided into 'traditional' areas, still very much used: 'Gilgit' in the south including the main town, 'Hunza' to the north along the left bank of the Khunjerab River, on the other bank of which is 'Nagar' (Map 4, p. 9). North from Gulmit lies Gojal (Upper Hunza) (Map 5, p. 11). Other districts flanking Gilgit District are Ghizer to the west, Diamar to the south and Skardu (Baltistan) to the southeast (Maps 1-2 and 6, p. 51).

This paper gives an account of collaborative work on the butterflies of one region of the Karakoram, Hunza and some of its neighboring valleys, undertaken by Florida International University and Oxford University, and the Pakistan Museum of Natural History, Islamabad. Field visits took place as follows:

1992 July: Preliminary survey
1994 1 July - 11 July
1995 4 July - 14 July
1996 3 July - 16 July
1997 8 August - 22 August
1998 12 July - 2 August
1999 8 July - 20 July

On 13 July 1996 the track from Skardu to the Deosai Plateau was still blocked by snow and ice. Work was carried out on the plateau on the following dates:
1997 9 August - 11 August
1998 29 July - 31 July
1999 July (Saif Ullah, PMNH)

Following the initial preliminary survey, carried out by David Spencer Smith (DSS) and Sylvia Hyder Smith, each group from 1994 through 1999 comprised DSS, S. Azhar Hasan (PMNH), Fiaz Ahmad (Field Assistant, PMNH), Gulam Mustafa (Driver, PMNH) and Gulam Naseer (PMNH), the Hunza resident team member. In August-September 2000, a much larger expedition was organized by DSS: the team comprised 5 entomologists (Pakistan), 3 entomologists (UK), 1 botanist (Pakistan), 1 botanist (UK), 1 geologist (Pakistan), 1 geologist (USA). This expedition included work on butterflies, incorporated into this paper, but extended to other insect orders, results of which will be published in appropriate journals.

In addition to annual visits as above, GN made several field expeditions, before or after the group's work. These included:

1997 11-16 June Muchuwar Valley
1997 16-20 July Muchuwar Valley
1998 17-19 June Chaprot (Nagar)
1998 1-6 Sept. Chumar Bakur (Nagar)
1999 28 June-3 July Kiliik Pass
1999 1-10 Sept. Mintaka Pass and Kiliik Pass
1999 11-22 Sept. Irshad Uwin Pass
2000 3-13 July Irshad Uwin Pass
2001 1-30 July Wakhan Pamir (Afghanistan)
2002 1-30 July Dilsun Pass; Mintaka Pass
2003 24-31 July Fakar Peak (Nagar)

GN also made year-round observations in the vicinity of Murtazabad and Aliabad, Hunza.

Historical Introduction

The political divide in the nineteenth century between Czarist Russia and British India, with geographical factors, was the background against which Russia obtained the lion's share of information on the Lepidoptera of the remote regions of Central Asia. It is not easy now to appreciate the depth of ignorance in the West of this vast area, in the 19th century. In an early British map for example (Carey, 1856), the mountains of Central Asia and the Himalaya were shown as running in parallel series, north-to-south — no barrier to invading Czars! The 'Great Game' between Britain and Russia was played out at one level as a gentlemanly exercise where opponents might entertain each other to dinner at camp on the rare occasions they met, as when in 1889 Lt. Francis Younghusband was invited to the camp of the Russian agent Capt. Gromchevsky north of the Hunza region (Hopkirk, 1990). The Russian talked of plans for a massive invasion of British India, and Younghusband may have reciprocated by outlining a winter route for Gromchevsky that almost resulted in the death of his entire group. At another level each country was involved in military operations — for Russia, consolidation of their conquest of the independent townships of Central Asia, and for Britain, attempts to establish an effective Afghan barrier of Afghan territory between the two nations.

This political history played an important part in the documentation of the butterfly fauna of Central Asia. British work on these insects will be considered first, if only to establish the playing field on which the Russians were so clearly the victor. The butterfly fauna of British India was superbly assessed and described by several authors (Marshall, de Niceville and Evans, 1882-1890; Swinhoe, 1885; Moore and Swinhoe, 1890-1913; Swinhoe, 1893-1895). Early in the 20th century, a valuable account was given by Bingham (1905, 1907) in his contribution to The Fauna of British India. But most of the field work backing these accounts was carried out in the southern bulk of the Indian subcontinent; the extreme north was impossible of access or, at best, difficult to reach and then generally when facilitated by a military exercise. For virtually every paper on butterflies of these northern areas, from the nineteenth century, to the author's name is attached his military rank: Capt. R. B. Reed, Capt. A. M. Lang, Major-Gen. H. C. Tytler, Col. W. H. Evans, Lieut-Col. Swinhoe, Maj. G. A. Leslie, Maj. Howland Roberts, and others. For some names, promotions may be traced in the entomological literature. Almost the only civilians involved were the taxonomists back in London who received specimens to publish.

These military collectors were not dilettantes, whiling away empty hours on a quiet front. In general, they were men carrying out often highly dangerous military missions, but with a passion to make the entomological most of their time in this or that remote posting, to which they were unlikely ever to return. The sense of this period is summarized by Swinhoe (1885) who spent 1880-1881 in Quetta (now in Pakistan) and Qandahar (Afghanistan):

"I took up a trained native collector with me, who collected every day, and, so long as he lived, my collection increased rapidly; but unfortunately the man was murdered one morning by a Ghazi who got into my quarters . . . and my very severe duties as administrative head of the whole of the Commissariat in Southern Afghanistan left me very little time to collect insects".

Swinhoe's Afghan list, including 43 butterflies and 50 moths were considered to represent "... all the Lepidoptera from that country of which we have as yet any knowledge". There is no other mention of his military work, but the year in question was extremely difficult for the British forces.

An even earlier report derives from collections made by Maj.
Howland Roberts "about six miles from Candahar" early in 1880. Collecting involved more than carrying a net: "... it is not safe to
go even a few yards from quarters without being well armed, and
to go any distance at all... is very unsafe without an escort". He
"made no observations after 2nd July" but does not mention that
Qandahar was soon afterwards under siege for several weeks,
relied when a renegade warlord was finally defeated, on 1
September 1880, ending the Second Afghan War (Smith, 2000).
Roberts' collections were published by Butler (1880) and included
23 butterfly species, including descriptions of new Melitaea,
Lampides, Lycaena and Chrysophanus.

There were very few regions of British India that potentially
permitted entry into true Central Asia — the very high mountain
ranges limiting India to the north. Of these, the most accessible
were routes through Ladakh and Baltistan, notably from the hill
station of Simla northeast to the border of the Tibetan plateau.
These lay to the east of the routes by which the occasional traveller
rode from Srinagar, the provincial capital of Kashmir, to the
outpost of Gilgit: a very arduous journey of several weeks (open only in
summer), which took the traveller across the Deosai Plateau to
Skardu. It was these men who named the plateau "Little Tibet" from
the physical resemblance, despite the altitude of the Deosai Plain
which, at around 14,000ft, is 2000ft lower than much of the vast
plateau of Tibet.

An early, and remarkable, list of Lepidoptera collected by Lang
in this part of India was published by Moore (1865). The species
noted include many from the Oriental zoogeographical zone—
including two Euploea species, and other danainines. However, the
majority of taxa were Palaearctic, and Lang travelled into the
northern highlands to record three parnassiines: Parnassius jacque-
montii, P. hardwickii and an unidentified species. While most of his
cited localities cannot now be identified, all these records were
clearly made on one or more routes from Simla, at c.8000ft to the
Tibetan border at 16,000ft. This account comprised 119 taxa, of
which 24 were described as new species; several of these have
survived the test of time and (more or less) of taxonomic revision,
including some that occur in the fauna of Hunza — Argyris
jainadeva (now Fabriciana adspice jainadeva), Lasionyma menava,
Lasiommata (now Pseudocharaza) baldiva, Polyommatus (now
Zizeeria) karsandra, Polyommatus ariana, and Chrysophanus (now
Lycaena) kasyapa.

Soon after, Moore (1874) published a list of 103 butterfly species
collected by Reed in the Valley of Cashmere (Kashmir), in the
foothills of the Pir Panjal (to 11,400ft) lying between the plains and
the valley, and a low plateau (7000ft) on the Ladakh route. Reed
commented on the disappointingly sparse fauna of the valley itself:
the now all-too-familiar impoverishment of a heavily cultivated
environment.

Another potential route to the highland border of Tibet from
British India was through Sikkim. Southern Sikkim, with the town of
Durjeeling, was in British India; independent Sikkim to the north
lay between Nepal and Bhutan with an inaccessible northern frontier
with Tibet. Elwes (1882, 1888) worked in British Sikkim in 1870
and 1886, and also received material collected by others, and
notably by Otto Moller who lived in Sikkim for ten years, aug-
mented by employment of "native collectors". Elwes comments that
at this time, no European had collected systematically at over
12,000ft in the Eastern Himalaya. His biological philosophy was
well ahead of its time:

"I am able to give the range and season of most [species] with
tolerable exactness, which is of far greater importance to Science
than the addition of a few bare names to a list that is already so
extensive."

The great difficulty of penetrating into the high regions is shown
by his obtaining very few specimens of Parnassius, and of only three
species: P. epaphus, P. jacquetonii and P. acco. However, in 1881 Elwes was able to make one foray to the Chumbi Valley on
the Tibetan frontier. He comments (Elwes, 1882) on a limitation of
material obtained by local people, that most specimens prove to be
from low elevation:

"... probably taken on the journey up. This part of the exped-
ition is often made to last as long as possible by these native
collectors, who infinitely prefer to spend their advance pay in
feasting at villages on their road to hard work in a cold climate ...

De Nicéville (1885) also published an account of the butterflies of
Sikkim. He recorded 313 species, twice the list for Calcutta, but
all were from relatively low sites, and the fauna of high elevation
Sikkim/Tibet remained a tantalizing goal.

A major contribution to knowledge of Kashmir (in the British
India context) is the account by Leslie and Evans (1903) of the
butterflies of Chitral, in the far northwest. Chitral is c.130 miles
north of the Khyber Pass, but the British presence in Chitral,
reaching a peak in 1895, was concerned not with this entrance to
Afghanistan but with efforts to place a preferred candidate (as
Mehtar) on the throne of Chitral. The historical details are complex
and fascinating, but unconnected with Lepidoptera other than
accounting for the unusual circumstance that the butterflies of this
very remote territory were probably better known, at the end of the
nineteenth century, than any other area of the extreme north under
British control. The list, published in 1903, was a landmark in two
senses: first, the account was prefaced by a synoptic view of the
topography of "Chitral" with references to lengths of valleys, and of
altitudes, with brief notes on vegetation. Second, in the list of
species, precise details are given (a) of flight periods, (b) of
frequency and (c) of lowest and highest altitudinal limits; also, (d)
the authority is given after each specific name in the text. The
authors visited Shandur, and the Baroghil Pass on the Afghan
border, at 12,000-13,000ft. Parnassius jacquetonii was noted as
"very common from May to September above 10,000 feet", very
small numbers of Parnassius charlonius and a few P. stoliczkanus
(a form of P. delphius) above Shandur. The mountain chain of
the Hindu Kush is considerably lower than the Karakoram, hence the
relative paucity of truly high altitude butterflies in the list. This
paper is, for a British publication of the period and geographical
region, outstanding.

To a very minor extent, compared with the Russian approach
(discussed below), Britain used non-military excursions beyond
India to obtain information on Natural History. In association with
Forysth's mission in 1870 to Yarkand, Chinese Turkistan, (Bates, in
Henderson and Hume, 1873) the tea planter and trader, Robert
Shaw, collected the Central Asian pierid Mesapia (now Balitia)
shawii "on the Chang Lang Pass: alt. 18,000 ft". Soon after, the
Indian government arranged a second mission to Chinese Turkistan,
then ruled by Yakub Beg, a Khokandi in control of a state which
was outside Chinese control between 1865 and 1877, and published
an extremely modest account of new species encountered (Moore,
1878): only seven new butterflies were included, one being
additional records for Balitia shawii. This account did, however,
excite the world with descriptions of three new pyralids, four
crambids, a tortricid and a tineid. Entomology was evidently not a
top priority in this political/economic exercise.
A rare British contribution to Russian Lepidoptera was made by Elwes, who visited the Altai mountains, a range between Siberia and Mongolia, primarily to shoot the wild sheep *Ovis ammon* but also to collect butterflies in search of evidence of a zoogeographical boundary between eastern and western Palaearctic regions. He was assisted by Russian lepidopterists, notably Alphéraky and the President of the Entomological Society of St. Petersburg, Semenoff. His published list (Elwes, 1899) drew together his own records, Russian collections and those of previous Russian authors, resulting in an impressive account of 181 species. His viewpoint was zoogeographical throughout, and he concluded that the bulk of the list had affinities with Europe, Siberia, northern Scandinavia and Amurland, only a small portion having affinities with the Pamir or Central Asia. Thus, of six *Parnassius* species Elwes found, only one, *P. actius*, is shared with Central Asia. This work is somewhat peripheral to the faunas discussed here, but deserves mention for its appreciation of the importance of biogeography — an appreciation shown equally by several Russian lepidopterists, notably André Avinov, as discussed later.

For Britain, an unusual link between political and biological endeavors occurred during the work of the Anglo-Russian Pamir Boundary Commission. In 1895 a joint Anglo-Russian boundary commission agreed on a geographical plan that resulted in the establishing of the 'Wakhan corridor', the very narrow extension of the Pamir region in return, and the Amir of Kabul received some unusual title of 'Surgeon Naturalist to the Commission') noted that the boundary between eastern and western Palaearctic regions. He was indebted to De Niceville for identifying the entire collection and correcting synonymy. Not surprisingly, the species lists included no surprises and certainly no new taxa.

Early in the twentieth century, Capt. F. M. Bailey occupies a unique position in British entomological exploration of Central Asia, and in other respects. In 1911 he followed a lengthy route through western China and SE Tibet, recording 238 butterfly species, also birds and mammals (South, 1913). In 1913, he and one colleague, Capt. Henry Morshad, carried out a much more extensive surveying expedition in south-eastern Tibet. They traversed 1500 miles of very difficult terrain in six months, solved the question of the gorges of the Tsango river, and mapped much of the mountainous border between Tibet and Assam (Bailey, 1957). This expedition was conducted without any permission, indeed without the knowledge of the Chinese authorities, at the time once again treating Tibet as a suzerain nation. In addition to this work, Bailey collected two thousand butterflies, of almost two hundred species, published by Evans (1913). In addition, he discovered the celebrated blue poppy, *Mecanopsis betanicifolia baileyi*.

In April 1918, at the time of Germany's WWI Spring offensive, Bailey embarked on a mission from India, via Chinese Turkistan (Kashgar) to Tashkent, capital of Russian Turkistan, in an attempt to contact Russians willing to continue the war against Germany and thus tie up troops who might otherwise be redeployed in the West. Twenty-one months later, he entered Persia. Even without any entomological component, Bailey's story is extraordinary; at one point, in order to obtain travel permits, he enlisted as a counterespionage agent in the Bolshevik Cheka, searching for "the spy Bailey". He eventually escaped to Persia with quite extensive collections of bird skins, and his account of the episode includes two lists of butterflies (included in an Appendix: Bailey, 1946): first, 39 species collected "between the Pamirs, Kashgar and the road to Russian Turkestan through the Alai Mountains, May to August 1918", and a second list of 67 species "Taken at or around Tashkent, summer 1919". Almost all his records were from medium to high elevations. In the view of the senior author of this paper, Bailey's determination to document butterfly faunas of remote regions despite other, extremely dangerous activities, is without parallel in entomological history.

Before we turn to Russian work in Central Asia, it will be noted that the Hunza region has not been mentioned in the above account. Through almost all the nineteenth century, the Hunza Valley, ruled by the *Mir*, was impenetrable to foreigners; the British may have ruled India but Hunza was beyond their purview. Francis Younghusband had entered Hunza briefly in 1889, but obtained no assurances about the intentions of the *Mir* vis-à-vis the Russians or Chinese. In December 1891 a force of British, Kashmiri and Gurkha troops defeated Hunza and Nagar tribesmen at the battle of Nilt Fort, with great difficulty; a treaty was signed at Ganesh (Lower Hunza), the *Mir* fled into Sinkiang (China) and thereafter relations between the British and the people of Hunza/ Nagar remained remarkably good, and the perceived threat of Russian infiltration vanished. Only with the opening of the 4-wheel drive "Karakoram Highway" through Hunza to civilian use in 1986, via the Khunjerab Pass, was ready access to the region available; before, travel in Hunza was slow, difficult and dangerous. We shall note the first butterfly records from Hunza below; first, a synopsis is given of the very extensive Russian contribution to knowledge of the butterflies of Central Asia, through the nineteenth century.

In the second half of the nineteenth century, Britain's apprehensions about Czarist Russia's intentions were not based solely on paranoia. In one decade, Russia had incorporated three ancient townships of Central Asia into the Empire, all within present Uzbekistan; the emirate of Bokhara was invaded in 1866 and became a vassal State in 1868; the khanate of Khiva was occupied in 1873 and annexed in 1875, and in that year Khokand was annexed. These military incursions into Central Asia not only added to territories controlled by the Czar but also opened up vast regions to biological, and notably entomological research. The history of Russian investigation of Central Asian Lepidoptera has been excellently reviewed by Tuzov et al. (1997) who introduced their historical survey by stating that:

"The second half of the XIX century was marked by the outstanding geographical discoveries in Central Asia, opening the doors for Russian researchers to a vast unexplored realm. . . . By the middle of the XIX century, the European part of Russia, including the Crimea, Caucasus and Urals, was a territory of the Empire best studied from an entomological point of view. The . . . Lepidoptera of Siberia and the Far East was known more fragmentarily, while the enormous areas of Central Asia, including the Kopet-Dagh, Tian-Shan, Ghiisser-Alai and the Pamirs, still remained a complete terra incognita".

Even before the Czarist expansion into Central Asia, Pyotr Petrovich Semenov became the first Russian to carry out scientific work at the Ili River (then Russian territory, later returned to Sinkiang), Lake Issyk-Kul and into the Tien Shan Range. Tuzov gives a very sympathetic account of Russia's acquisition of the Central Asian khanates, but notes the establishing of the "Turkestan
Colony" with Tashkent as the capital, in 1867, and notes "... by the early 1870's, favourable conditions for research in the Tian Shan had been formed". Thereafter, the Russian Entomological Society, Russian Geographical Society and the Academy of Sciences arranged numerous expeditions to Central Asia. In addition, Tuzov mentions that many individual entomologists took advantage of the new access to the region to embark on collecting visits; of these, G. F. Christof, S. N. Alphéraky, G. E. Grum-Grshimailo and others are recorded in specific names of many butterflies of the region. This was a time of almost limitless exploration, with a wealth of taxonomy resulting: the Russian Entomological Society was founded in 1860; Tuzov notes that during the Society's first 50 years, 1300 articles were published, of which 81% concerned insect systematics, with descriptions of over 1200 new species of Lepidoptera.

The Society was supported by many senior state officers; Grand Duke Nicolai M. Romanov was Honorary President and other honorary members included other Dukes, Barons and State Council members. The name foremost in early entomological exploration of Central Asia is that of Aleksei Pavlovich Fedschenko. Between 1868 and 1871 he made a series of expeditions in the lower Syr Darya and Turkestan regions: several localities in the area of Samarkand, Khokhand, and the Alai and northern Pamir. Fuller details of these extraordinary field travels are given by Tuzov et al. (1997). At this time, N. G. Ershov (Ershoff) worked on much of Fedschenko's material; he had a vast collection, part going to his Imperial Majesty Grand Duke Nicolai, but most acquired by the Imperial Academy of Sciences. He published the first catalog of Russian Lepidoptera (Ershov and Field, 1870).

In 1880, Romanov invited H. F. Christof, an entomologist who worked in the Volga region, Persia, Transcaucasia, Central Asia and the Far East, to collect for him. For reasons not clarified, Tuzov et al. note that a substantial part of Christof's collection found its way to the British Museum (Natural History). Romanov's contribution to knowledge of Russian butterflies was outstanding. He published nine superbly illustrated volumes: Mémoires sur les Lepidoptères, including accounts of the faunas of Kamchatka, Central Asia, Tibet, Mongolia and Korea (Romanov, 1884-1897). He was critical of Czar Nicolai II for his involvement in the First World War, a view for which he was imprisoned, then released. After the coup of October 1917, he was arrested again and murdered by the Bolsheviks.

A further political benefit to Russian lepidopterists late in the nineteenth century was that the Ili River region, and the main town of Kulja was then Russian territory. Sergei Nicolaevich Alphéraky, a pupil of Staudinger in Dresden, was advised by Col. N. M. Przewalsky (of horse fame) to explore the Kulja region. His timing was opportune: Kulja and the Ili were transferred to China soon after, and remained practically closed to foreigners for a century and still very difficult of access. He was the first European visitor to the eastern Tian Shan, and discovered numerous new butterfly species (details in Tuzov et al., 1997). Alphéraky (1881) published a remarkable account of his 1879 work in and around Kulja: a detailed account of the time of emergence of a wide range of species, with altitudinal limits and distributional data for 112 taxa, several newly described.

The name of G. E. Grum-Grshimailo is attached to many specific and sub-specific names of Central Asian butterflies. He became a friend of Grand Duke Romanov, who encouraged him to visit the Pamir range, at the time almost unexplored. Between 1884 and 1890 Grum-Grshimailo made five expeditions into Central Asia, part of the first two being published in volumes 2 and 3 of Romanov's Mémoires. Results of his four Pamir expeditions were included in volume 4 (Grum-Grshimailo, 1890). The many new taxa resulting from these travels were published separately (Grum-Grshimailo, 1888). At that time, the extensive Pamir list of Lepidoptera included 119 endemic species or subspecies, many described by Grum-Grshimailo. In 1889-1890, he made a last expedition to the eastern Tian Shan, and continuing into western China. These collections, of 35,000 insect specimens, were published in a perceptive zoogeographical paper (ref. in Tuzov et al. 1997) which included descriptions of 47 new Palaearctic lepidopteran species and subspecies, "bringing in also material collected by other entomologists in western Siberia, the Altai, Middle Asia, western Tian-Shan, Hinda Kush, the Himalaya, the Pyrenees, Canada, etc."

Thirty-six additional taxa were described by Grum-Grshimailo in 1899 and 1902 in a massive zoogeographical and taxonomic work that incorporated the rich collections in the Zoological Museum, St. Petersburg, from Siberia, Mongolia, the Tian-Shan, Szechuan Province (China), the Pamir and Turkmestan (refs in Tuzov et al., 1997). He produced three extensive publications in 1896, 1899 and 1907 on "Description of travel to western China" in which he compared the faunas of Siberia, the Altai, the Tian Shan, Manchuria, West and East Tibet and Kansu Province of China, using his own material and collections made by other Russians, stressing possible colonization routes in the post-Pliocene, and the incidence of endemism in the faunas. These works are in Russian and references are given in Tuzov et al., 1997).

Andrei Nicolaevich Avinof (Avinoff) spanned both Russia and the West in his entomological career. He also approached butterfly distribution and speciation from a nationalistic as well as a biogeographical standpoint. Quoting from the citation by Tuzov et al. (1997) of a 1914 paper by Avinoff:

"... investigations of the heart of Central Asia — Mongolia, western China, Tibet — which, since the second half of the last century, has glorified so many names of Russian explorers and travellers, has been only a logical, inevitable step in the task of a careful study of the flora and fauna of our motherland".

Further, that:

"... the leading explorers of Indian Lepidoptera of the time, such as F. Moore and Ch. Swinhoe, paid the main attention to tropical species, and knew very little about Palaearctic forms. Of course, there is no distinct border between the faunas, so we are talking about a more or less deep penetration of species which we recognize as Palaearctic into the habitats of tropical ones, and vice versa".

The first sentence of this passage is true, but also somewhat unfair: Avinoff and his Russian colleagues of the nineteenth century enjoyed a relatively smooth path into Central Asia and lands beyond, while their British counterparts were restricted, in the main, to observing "tropical species" not through choice but through the physical, political and logistical barriers that impeded their entry into Central Asia from the South. We would counter that despite these barriers, the few Britons who contributed to knowledge of Central Asian butterflies did as much as they could have done, and certainly would not have appreciated Avinoff’s rather patronising remark! Alone among Russian lepidopterists, Avinoff made an extensive visit to British India in 1912. Precisely how this was arranged is not mentioned in his account (Avinoff, 1913), though on the Russian side it was an official expedition of the Biogeographical Commission of the Imperial Institution. Presumably by 1912, the acute suspicion of the Great Game era had lessened: In British territory,
Turkistan. He tabulated not only his own records but also those of all authors who had visited or written extensively on the butterflies of these regions. He recognized and subdivided the Palaearctic zone that came to underpin work on faunal distribution and evolution.

Avinoff omitted Hunza and travelled through Baltistan and Ladakh, then cast into the Great Himalaya through Kumaon, Rupal and Sikkim. He returned to Fergana (in present Uzbekistan) via Chinese Turkistan. He tabulated not only his own records but also those of all authors who had visited or written extensively on the butterflies of these regions. He recognized and subdivided the Palaearctic zone that came to underpin work on faunal distribution and evolution.

Avinoff prepared a more accessible paper in English, with an account of his itinerary in Kashgar and Turkistan, and a list of butterflies collected, but as Hampson (1919) notes, the manuscript sent to the Entomological Society of London in 1913 was "... lost in the post [and] owing to the outbreak of war he has been unable to supply a copy of the missing MSS." All that remained for Hampson were descriptions of a few moths.

After the Russian revolution in 1917, Avinoff left for the U.S.A., settling in Pittsburgh, becoming Director of the Carnegie Museum of Natural History, where he produced, with a pupil Walter Sweadner, a revision of the important Central Asian satyrid genus Karkanasa (Avinov and Sweadner, 1951).

The Revolution of October 1917 and the success of the Bolshevists severely damaged the country in so many ways that lepidopteran taxonomy must be well down the priority list, but it survived. Tuzov et al. (1997) note the great contribution made by amateur entomologists in the Soviet Union in the 1920s and 1930s. Tuzov and colleagues note the production between 1936 and 1960, of six volumes of "Fauna of the USSR" which included biogeographical and faunistic surveys of the Soviet Union. A general survey was presented by N.Y. Kuznetsov, who estimated that 75% of the "Macrolepidoptera" were known, but only 25% of the "Microlepidopteran" families. Kuznetsov estimated the butterfly species list for the USSR at over 600: a total coincidentally similar to that of the USA, soon to vie with the Soviet Union in a more ominous parity.

During the 1920s and 1930s travel from the West to the USSR was difficult and biological work virtually impossible. After WW2 this situation became generally worse; most importantly few of the wealth of Soviet taxonomic publications emerged to the West, where knowledge of work within Russia and satellite States was minimal. After the demise of the Soviet Union, the picture has changed dramatically: the butterflies of Russia are now documented in the two excellent volumes by Tuzov and his colleagues, so often cited in this paper, while butterflies of the Pamir have received comparably excellent treatment by Tshikolovets (1997). Further superlative accounts by the latter author, on butterflies of Turkmenistan (Tshikolovets, 1998), of Uzbekistan (Tshikolovets, 2000) and Tajikistan (Tshikolovets, 2003) have been published, with accounts of other ex-Soviet territories including Kirgizstan in preparation. The importance of the Uzbekistan work in the present context is that all the emirate/ khanates incorporated into the Czarist Empire in the nineteenth century — Bukhara, Khokand and Khiva — lay within this now independent country.

The purpose of the above lengthy, but still much abbreviated account is to document the great preponderance of Russian work on Lepidoptera in Central Asia in the nineteenth century, with skilled taxonomists working difficult terrain but with an uncomplicated agenda and extensive assistance, compared with the few British entomologists, working equally difficult terrain but generally fighting a war or otherwise occupied in duties that limited entomology to a minor role. During the period when Russia supported many major expeditions to Central Asia and beyond, Britain supported not a single one.

Localities worked from 1994

Before considering early work on butterflies in the Hunza region, it is convenient here to give a brief account of the localities visited during our field visits. The number of times a locality was visited is mentioned for each entry, where appropriate. Localities along the Karakoram Highway (KKH) were visited on each trip, often when both outgoing and returning. The number before each locality is given on the accompanying Map 2 (see p. 2).

Karakoram Highway (KKH) and side-valleys to Sost (10,000ft)

Note (see Map 1): some of the listed localities have been combined in the Distribution Table, in which all sites along the KKH are tabulated under "Hunza" (Gilgit and Kargah sites are combined, likewise Nomal and Naltar, Minapin and Tak, and Sost and Tharbai/Kalent). Records from Mintaka and Kilik routes are combined. Details of records are given in the Table, and discussed in the taxonomic section: species are mentioned in the list of localities only to provide points of reference for altitude or Palaearctic/Oriental demarcation. In keeping with current British practice and traditional British mountaineering accounts, altitudes are given in feet (readily transposed into meters = feet / 3.3).

1. Gilgit. This was the administrative center of the former "Gilgit Agency" and remains the center for Hunza and other valleys, including Ishkoman and Yasin to the West. The town lies at 4500-5000ft: the edge of the town is heavily irrigated for field crops, fruit trees and livestock. The town offers few collecting sites, though flowers in hotel gardens and a public park yielded Danaus chrysippus, Pieris rapae, Pseudozizeeria karsandra, Zizeeria maha and Heliothis sana. Just outside the town limits to the north, a jeep track leads to the Kargah Valley.

2. Kargah Valley: starting at the altitude of Gilgit and ascending along a narrow ravine (Fig. 9) above a small, fast-flowing stream to 10,000ft, where the ravine opens onto wet cultivated land. The ravine passes through cultivated patches and occasional habitations, but between 7000ft and the flat summit cultivation and irrigation are minimal or absent and the mountainside bears scattered shrubs and occasional coniferous trees. The entire valley below the top, both in and outside areas of cultivation proved very species-rich on each of 3 visits. Another route out of Gilgit to the NNE leads to Nomal.

3. Nomal and Naltar Valley. The village of Nomal is reached after traversing a flat, desert plain. This route lies parallel with and immediately to the west of the main Hunza Valley. The village of Nomal exists through irrigation: fields around the settlement yielded low-altitude pierids, lycænids and Papilio machaon. From Nomal (at 5000ft) a steep jeep track ascends to the start of the Naltar Valley at 7000ft, densely wooded with tall pine trees (Fig. 1). This valley was visited on 4 occasions: in ungrazed areas butterfly diversity was high, but damaging effects of overgrazing became increasingly evident. We estimated that this damage was more extreme in Naltar than in any other region surveyed: following a poor year track to Naltar Lakes (10,000ft), we found butterflies virtually absent on the adjacent mountainsides, where flowering plants had been close-cropped by sheep and goat grazing. The higher regions of Naltar were not visited.

The portion of the Khunjerab Highway (KKH) included in our survey extends from Gilgit to Khunjerab Pass; its course is shown in Maps 1 and 2. Several sites along the KKH were worked on each of 7 visits: these are shown on the maps in order of increasing altitude.

4. Joglot: an "oasis" supported entirely by controlled irrigation from local streams, this village provided records of an Oriental Eurema and the sole record of the hesperiid Eogenes alcides. Just beyond the village is one of the most dangerous land-slide zones, which closed the KKH for several weeks just after we returned in...
1998. The region beyond Joglot is extremely arid, in places devoid of vegetation: here, at a site known as Shaitan pari (Devil's Hill) we recorded a shade temperature of 125°F (50°C) where, needless to say, butterflies were absent. A short distance beyond Joglot the KKH leads to Nilt.

5. Nilt: a village that is more important historically than entomologically. It saw the only major battle in Hunza between British and Kashmiri forces and tribesmen of Hunza and Nagar, in 1891, when the British became concerned that the Mir (King) of Hunza might negotiate with Czarist Russia and offer a route into India or come to some arrangement with the Chinese administration in Sinkiang. With great difficulty, the British won and the resulting treaty, perhaps surprisingly, initiated an unbroken period of friendship between the people of Hunza and Britain, which was later to have entomological results. At a series of small villages the left-hand side of the KKH (bordering the Khunjerab River, a tributary of the Indus) is cultivated; the hillside on the right side is partly covered in scrub, and proved a good source of low-altitude lycaenids, pierids and satyrids. Beyond Nilt, the KKH continues to site 6.

6. Chaprot: a foot-track leads North from the village of Chaprot,
in Gilgit District near the border with Nagar, reached from the KKH. The track leads through cultivated fields onto high, exposed mountainside to 13,000ft. This route was followed only by GN during our work, but his collections were productive and interesting, and are included in the Distribution Table. The KKH continues beyond the turning to Chaprot, gradually ascending to 7500ft through villages, fields, and groves of apricot, almond, apple, cherry, and pear, with occasional white mulberry, reaching site 7.

7. Murtazabad, Aliabad and Karimabad: the main villages of Hunza. This is the most populous region of Hunza (Fig. 2) and the traditional seat of the Mirs of Hunza for a millennium. From here GN has obtained year-round observations of butterflies. From the KKH before Murtazabad leads a foot-track in Nagar to Minapin. Baltit Fort is in Karimabad (formerly Baltit).

8. Minapin and Fakar Peak: in 1995 we followed the track to Minapin (Nagar), a green, well watered and, at higher altitude, relatively lush valley, with scattered stunted juniper (Fig. 3), other conifers and patches of high pasture. This area proved productive for medium altitude lycaenids, pierids, satyrids and nymphalids, together with the lowest record of Parnassius charthonius at 10,000ft. Minapin is about 10 miles west of the 24,500ft Fakar Peak (Fig. 4), worked by GN in July 2003 and the two localities are complementary and considered together: records at Minapin reached 10,500ft and at Fakar from 13,000 to 15,000ft. Beyond the start of the route to Minapin a long and hazardous trail from the north side of the KKH led to the Muchuwar Valley.

9. Muchuwar Valley: a very high pasture, used on occasion by local people in the summer. It is extremely difficult of access, involving a traverse of the Muchuwar Glacier: of our party only GN and Fiaz Ahmad worked this region, the former on two occasions. Beyond Aliabad and Ganesh (where the treaty ending the war of 1891 was signed), a jeep track leads from the KKH on the right side of the road through Nagar territory to site 10.

10. Hoper Valley: has a small, seldom visited village, markedly hostile to strangers, at 8000ft. Extensive cultivation of the valley floor (Fig. 5) and limited vegetated mountain slopes above, worked to 10,000ft, yielded the co-highest record of an Oriental species — Papilio polyctor, at 9000ft, and was the sole locality for Hyponephele carbonelli (Verhulst, 1999) of H. dysdora. A very lengthy glacier passes below the village, but did not provide terrain of entomological interest. At higher altitude the KKH leads to Gulmit.

11. Gulmit: the chief village of Gojal (Upper Hunza) at 8000ft is again heavily irrigated and cultivated. In 1994 we walked to 10,000ft above the village, an area that provided the co-highest record of an Oriental species — Catopsilia pyranthe — at 9000ft, and the lowest record of Polyommatus ariana. The KKH then ascends gradually to Pasu.
12. Pasu: here, at 8500ft, below the foot of the Pasu Glacier (Fig. 10) and beyond a cultivated zone, dry mountain scrub is dominated by *Perovskia abrotanoides*, a labiate plant with pungent flowers that is extremely attractive to the lycaenid *Lyceides samudra*. The extreme aridity of this region, as in many areas of Hunza, and of the importance of irrigation is illustrated in Fig. 6. Fifteen miles (24km) beyond Pasu the KKH reaches Sost.

13. Sost: the last village in Pakistan, before the ascent to Khunjerab Pass and entry into Sinkiang (Xinjiang) China. Sost is heavily irrigated with cultivation extending well above the village. From Sost, a foot-track ascends through Khudabad reaching high mountainside pasture at 13,000ft locally known as Tharbai.

14. Tharbai / Kalent: these very steep mountainside sites are occasionally used for grazing; during our visit, they provided the lycaenids, *Lyncena aditya* and *Plebejus bellona*, also *Parnassius charltonius* and *P. delphius hunza*.

High localities and passes beyond Sost (see Map 1-2 and 5)

From Sost the KKH ascends through the often very narrow gorge of the Khunjerab River, leading into the Khunjerab National Park at Dih (11,500ft). The region is extremely arid, with vegetation often limited to bushes of *Rosa webbiana*, *Tamaricaria elegans* and *Ephedra gerardiana*. Collecting was often prompted by sighting of a single butterfly; no sites were very productive. Records of *Lyceides samudra* ceased immediately after Sost, though specimens were collected at Misgar, at the same altitude. *Ablutina chrysopis* was recorded near glacial run-offs by the road. After Dih, the only National Park record of *Parnassius charltonius* was made, and many males of *Plebejus bellona* were seen puddling on wet mud (Fig. 11).

15. Chipursun Valley: 3 miles beyond Sost, a jeep track leaves the KKH for the Chipursun Valley, a region within the 1948 exclusion zone and very rarely visited by foreigners, or Pakistanis other than local residents, for over 50 years. DSS, GN and Darren Mann visited this valley in August 2000; the valley floor includes a series of very small, well irrigated hamlets (Fig. 7), ascending gradually from 10,000ft at the valley entrance to 11,000ft at Ziarat, an isolated shrine with a few buildings where Afghans rest after making the descent from the Irshad Uwin Pass. Ziarat is not only a route into Afghanistan, but other passes lead from above Ziarat to the heads of the Ishkoman and Yasin Valleys — paralleling Hunza to the West. No visiting team members made the trek to Irshad Uwin Pass.

16. Irshad Uwin Pass: this pass (Fig. 22), at c.16,000ft, leads to Wakhan, Afghanistan. GN recorded butterflies at, and leading up to this pass in July 2000 and July 2001. Of particular note were parnessines, lycaenids (e.g. *Polyommatus pulchella*) and satyrids. In July 2001 GN followed this route to enter the Wakhan corridor, Afghanistan. Butterfly records made on this expedition are described below (see Afghan records). Just beyond the Chipursun turning, a track from the KKH leads to Misgar.

17. Misgar: this village lies at the end of a 13 mile jeep track branching NW from the KKH a short distance north of Sost. Since 1948 Misgar, and the territory beyond to the West was off-limits to all foreigners, and to Pakistanis other than local residents, as a security zone, bordering China and, further West, Afghanistan. This restriction was lifted in June 1999, and the following month DSS and GN made a brief visit to the village and started to plan a larger expedition for the year 2000. Misgar lies at 10,000ft, level with Sost; it is small, irrigated and set in very arid terrain (Fig. 8). It was formerly (from 1916) the first (and for many years the only) telegraph station reached by travellers from China and Afghanistan crossing into British India via the Mintaka, Kilik or Afghan passes. It has erroneously, and confusingly, entered the entomological literature as a locality, even a type locality of high altitude butterflies (see "The Misgar Muddle" below). From Misgar, a foot- or yak-track continues to Kilik Pass.

18. Kilik Pass: in August 2000, DSS organized and obtained funding for a large expedition that walked or rode yaks through the uninhabited country from Misgar to Kilik Pass (16,000ft) (Fig. 20-21) via the following locally named sites:

- Lup Jangal (11,500ft)
- Murkushi (12,000ft) (Fig. 17)
- Shirin Maidan (13,000ft) (Fig. 18)
- Luto Hari (15,000ft) (Fig. 19)

Butterfly taxa collected on this expedition provided new data on distribution of high altitude species, particularly of parnessines, *Colias* species and lycaenids. It is probable that all records from Kilik/Mintaka are new: these areas were visited only very rarely before 1948. Prior to our work at Kilik, GN made an exploratory visit to Mintaka Pass.

19. Mintaka Pass: in September 1999 GN visited Kilik, assessing the route, and also visited the ancient Mintaka Pass, used for two millennia since the start of the early Silk Route. Butterfly records from Mintaka are tabulated as Mintaka/Kilik. On GN's advice, the expedition of 2000, lacking time to visit both passes, selected Kilik, which proved a very valuable source of records, not only of butterflies (e.g. *Polyommatus erigone*, *P. hunza*, *Plebejus bellona*) but also of other insects, and plants. A more easterly track from Misgar leads to Dilsun Pass.

20. Dilsun Pass: at the extreme eastern end of the Pakistan/ Afghan border to the Wakhan. This very high pass (at 19,000ft) is now rarely used, and lies at the extreme eastern end of the Paki- stan/ Afghan border to the Wakhan. In July 2002 GN attempted to enter the Afghan Pamir by this route, but all passes to Afghanistan had been closed by the Pakistani authorities. GN worked the approaches to Dilsun from 16,200ft downwards (Fig. 23) and made several high altitude records despite poor weather conditions. These records are included in the introduction to individual species. However, some material was lost in transit between Pakistan and England and the species list is thus incomplete, and is omitted from the Distribution Table. To our knowledge, no observations on butterflies have previously been made in the Dilsun area and thus all records are novel for this locality.

Continuing along the KKH past the Misgar turning, the road ascends at first gradually, through an arid and sometimes narrow ravine beside the Khunjerab River, to the entrance to Khunjerab National Park, at Dih (11,500ft). The area around Dih is very arid, and not a productive area for butterfly recording, though it yielded the only record of *Parnassius charltonius* in the Park and a large puddling assembly of *Plebejus bellona* (Fig. 11). Beyond Dih, the KKH ascends to Barkhun.

21. Barkhun: this account now returns to the Khunjerab Valley. Barkhun, at 12,500ft, a long-abandoned settlement used by workers constructing the Karakoram Highway, is a thinly vegetated site which provided the first high altitude *Papilo machaon*, and here *Piers dea* was sympatric with the much scarcer *P. brassicae*, *Hyponephele brevistigma* was at times common, and the only satyrid in the region. The route also provided the lowest altitude records of *Polyommatus silioczkana*. Beyond Barkhun the KKH continues to ascend to the Chapchingal Valley.

22. Chapchingal Valley: lying south of the KKH at 13,200ft, the stony valley floor follows a small and dissected river, steep mountainsides abut the valley floor (worked to 15,000ft) and vegetation is limited to isolated plants growing between the stones on the valley floor, and larger patches of low vegetation around a glacier crossing the valley about 3 miles from KKH. Despite the
very unpromising appearance of this valley (Fig. 13) 13 butterfly species were recorded on 2 visits: these included Hesperia comma and Lycaena phlaeas, and the more localized Parnassius delphius hunza. Visser-Hooft (1926) crossed the 19,000ft pass from Sinkiang, China, (far left, Fig. 13) on the expedition in 1925 that yielded the first published butterfly records from Hunza. It is unlikely that anyone has attempted to cross this pass since that time. Beyond Chapchingal, the KKH enters a series of acute and rapidly ascending bends, from 13,200ft to 14,500ft.

High altitude KKH localities: sporadic collecting yielded larger numbers of Polyommatus stoliczkanus with Melitaea fergana and Pieris deota. At 15,000ft, the KKH enters the Hunjerab Plain, which rises gently to c.15,500ft at the demarcation of the Pakistan/China border. All work was carried out on the Pakistan side; from the plain arise mountains to north and south: vegetated on the lower slopes, then with a zone lacking obvious vegetation, surmounted by the zone of permanent snow. In July/August, the snow line lay at around 17,000ft. We have worked the Khunjerab Plain several times on each of 7 visits, and in three years higher elevation sites above the plain almost to the snow line were sampled for butterflies. This work has established the ecological separation between the Khunjerab Plateau and higher slopes arising from it, other high passes to the west, and the Deosai Plateau to the SE, notably in distribution of Parnassius taxa. As a potentially critically valuable ecological site in northern Pakistan, Khunjerab National Park deserves special mention.

Khunjerab National Park

On April 29 1975 the Khunjerab National Park (KNP) was formally established by the government of Pakistan: 900 mi² (2300km²) of high land without human habitation, at the apex of the Hunza Valley and along the border with Sinkiang (Xinjiang) China. The Park was thought to include populations of the Snow Leopard (Panthera uncia), the Himalayan Brown Bear (Ursos arctos), the Blue Sheep (Pseudois nayaur), possibly the Siberian Ibex (Capra ibex siberica) and the Marco Polo Sheep (Ovis ammon polii). The region of the Sino-Pakistan border to the West that included the Mintaka and Kilik passes was omitted from the Park as a closed security zone. The KNP was beset by problems from the outset: in a recent critique of policies relating to the Park, Knudsen (1999) noted that when it was established, the Park excluded villages, but incorporated areas traditionally used for grazing by several Wakhi villages in Upper Hunza.

It is outside the remit of this paper to comment on the political rights and wrongs of this controversy. However, arguments concerning the conservation function of the Park center entirely on mammals: the detailed review by Knudsen (1999) nowhere makes mention of a single invertebrate animal — insect or other. Before
In that year, at least, peak emergence was not synchronized with peak flowering. Ignorant of the climatic vagaries of the region, and in the total absence of any meteorological data for Khunjerab, we returned the next year on the same date: few plants had commenced flowering, noon temperature was 43°F (6°C), snow was falling and no butterflies were seen. If 1994 conditions are considered "mid-Summer" and in 1995 "late Winter/early Spring", subsequent visits in July 1996 were in "late Winter", in August 1997 "Fall", in July 1998 "early Spring", in July 1999 "Spring" and in 2000 "late Summer". It is by no means certain that the Khunjerab Plateau sees the prolific flowering of 1994 every year; we never again encountered these conditions. The highest butterfly diversity on the plateau was recorded in early August 1997, past the time of peak flowering: all the above species were found on or above the plateau, together with Parnassius actius, P. sino, Karanasa leechi, Boloria sipora, Melitaea didyma and Pyrgus alpinus.

Detailed monitoring of meteorological conditions at Khunjerab (at present non-existent) would provide an invaluable background to work on the phenology of butterflies and other insects, and plants. The "stress ecology" of how insects and plants cope with extreme year-to-year fluctuations could ideally be studied at Khunjerab. Apart from grazing and political problems, climatic factors must challenge the ecosystem of Khunjerab Plain and the mountains above. We first visited the plateau on 5 July 1994: much of the plateau was carpeted with plants in full bloom (Fig. 14; and see Botanical Lists). Noon temperature in the sun reached 68°F (20°C) and butterflies were flying in the brisk wind. Despite profuse flowering and favorable weather conditions, the peak of butterfly emergence had not yet occurred — only 7 species were recorded on the plateau: Parnassius epaphus, Colias cocandica, Colias eogenae, Pontia callidice, Pieris brassicae, Vanessa cardui and Albulina asiatica. Of these, only C. cocandica and A. asiatica were common.

Effects of grazing
Grazing animals — goats, sheep, cattle, yaks — have been an essential part of the Central Asian scene for centuries, probably millennia. In regions such as Hunza and adjacent valleys, the continued increase in human populations has gone hand-in-hand with increase in numbers of farm animals. This increase, and the general lack of any plan to rotate grazing areas, has emphasized the immediate threat to Pakistan's Northern Areas from uncontrolled grazing. It might reasonably be argued that conservation of butterflies is not a high priority in Pakistan's present political agenda. However, conservation of animals and plants is, in the view of the present authors, an affirmation of high civilization, a status for which Pakistan unambiguously qualifies. Country people must feed their animals: if their traditional grazing lands are taken away (for the valid reason of attempting to preserve indigenous fauna and flora), then the Government is morally obliged to recompense these people, and to provide alternative plans for maintaining their farm animals. To do nothing, as seems to be the case at present, will speedily lead to collapse of the flowering plant/insect ecosystem in some delicately balanced high altitude localities. If this is allowed to occur, then "Conservation" becomes a hollow issue: if no attempt is made to preserve all members of the fauna and flora, then attempts focused on a few mammals and birds becomes a political rather than a biological exercise.

On one occasion in Khunjerab in July 1999, we saw perhaps 1000 goats and sheep led to graze on the plateau. On the approach to the remote Kilik Pass in August 2000 we saw several hundred goats and sheep led from lower elevations in Hunza, through very arid terrain, to graze on the thin vegetation at 15,000ft and above. These were joined by yaks, crossing over from China. In the Naltar Valley in 1995 and 1997, adult butterflies were virtually eliminated by over-grazing; here, and elsewhere, occasional patches of protected land, or perhaps enclosed by a dry-stone wall, or on a mountain slope less accessible to goats and sheep than elsewhere, are sometimes spectacularly species-rich. Without government interest and willingness to act, Pakistan's high altitude insect fauna is critically threatened.

Early butterfly records from Hunza
Despite all the extensive work on Central Asian butterflies, whether from Russia or Britain, the Hunza Valley and its surrounds remained a conspicuous lacuna: until late in the 20th century, no entomologist had worked systematically in Hunza. Other than recently identified records in the Natural History Museum (BMNH) showing that Maj. John Biddulph, the first British Political Agent in Gilgit from 1877 collected a few butterflies (see Charaza heydenreichi below), the first butterfly specimens from Hunza were found, unpublished and buried in the same collections, obtained by Maj. R. W. G. Hingston. Hingston was a celebrated naturalist and mountain-iac, a member of the 1924 British Everest expedition (Hingston, 1925), on which he collected several new high altitude butterflies.
Plate 3. Fig. 13. Chapchingal Valley entrance (Site 22) at c13,200ft., off KKH below Khunjerab Plateau. Records included Parnassius delphius hunza, Papilio machaon, Melitaea fergana, Plebejus bellona, Polyommatus stoliczkanus and P. erigone. Fig. 14. Khunjerab Plateau (Site 22) at c15,500ft in July 1995, near peak of flowering season (see Text for records). Fig. 15. Dwarf plant of Sowisnana simpsonianus growing between stones at c16,500ft above Khunjerab Plateau (Site 22), in flight zone of Parnassius actius catilina and P. sino satersensis. Fig. 16. Glaciated valley above Khunjerab Plateau (Site 22) adjoining Sino-Pakistan border. On lower slopes flanking glacier Parnassius epaphus, Colias cocandica, C. eogene, Karanasa leechi, Melitaea didyma, Boloria sipora and Albulina asiatica are more common than on the plateau below, but Parnassius actius and P. sino occur only on the higher slopes above the vegetated zone, near the snow line. Fig. 17. Murkushi (Site 18), a locality en route to Kilik, near point of convergence of tracks to Mintaka and Kilik passes (see Map 2). This wet area in very arid territory has probably been used as a camp ground for over two millennia since the time of the old Silk Route. Fig. 18. Shirin Maidan (Site 18), another locality on the Kilik route, at 13,000 ft. where Colias eogene and Lycaena aditya were frequent.

Plate 2. Fig. 9. Kargah Valley (above Gilgit) (Site 2) at c8000ft, locality for Pseudocharaza droshica, Gonepteryx rhamni, Aricia astorica, Plebejus sarta, Plebejus devanica and site of puddling assemblies of Papilio machaon and Lampides boeticus. Fig. 10. Mouth of Pasu Glacier (Gojal) (Site 12) from KKH at 8500ft; Plebejus samudra abundant on flowers of Perovskia in foreground. Fig. 11. Salix stand bordering Khunjerab River at Dih (Site 21), near entrance to National Park; site of puddling assembly of Plebejus bellona. Fig. 12. Globe thistle Echinops cornigerus along Khunjerab River ravine (Site 21) at c11,500ft, at times the sole nectar source for Hyponephele brevistigma in this area.
He lived at intervals from 1914 to 1916 in Hazara, a region crossed by the KKH through Abbotabad, north of Islamabad. Hingston (1920, 1923) published two works on the natural history of this area, on the fringe of the Karakoram foothills, but neither includes any mention of Hunza. However, series in the Museum include two specimens of Satyros minni (f. clarissima) Setz (= P. baldiva Moore, 1865) labelled as collected by Hingston in "Hunza" on 21 and 25 August 1913, at altitudes of 9450 and 7500ft. No doubt other Hingston specimens are present; these records suffice to establish his visit to Hunza before his residence in Hazara.

The first butterflies from this valley destined for publication were received at the British Museum (Natural History) [now the Natural History Museum] in the 1920s. A small collection came in 1926 from Janet Visser-Hooft, a Dutch mountaineer and glaciologist; she and her expedition colleagues traversed the Hunzabal pass en route to the Hunza Valley (Visser-Hooft, 1926). Evans (1927), who described the collection, noted that it comprised 410 specimens, of 27 species. He noted the surprising paucity of species; that "in parts of Chitral and Central Asia many more species occur at similar elevations". His forecasting of "missing" species was perceptive: Parnassius simo and actius are now known from the region (though P. acco has yet to be recorded). He regarded Pieris deota as a possible "local race" of P. brassicae, while the two are now known to be specifically distinct; Visser-Hooft's collection lacked any Karanasa, which Evans reasonably found surprising. Only three lycaenids were found: Lycaena (=Albulina) metallica, two populations of Polyommatus eros (recte ariana) to which Evans assigned subspecific names: hunza and janetiae, and a single specimen of Lycaena phlaeas. The only hesperiid included was Hesperia sao Moore, 1865) was collected by Kingston in "Hunza" on 21 and 25 August 1913, at altitudes of 9450 and 7500ft. No doubt other Hingston specimens are present; these records suffice to establish his visit to Hunza before his residence in Hazara.

David L. R. Lorimer was a very unusual man, and unquestionably the best appointee for the post he held from 1920 to 1924. He was not only the first foreigner to gain sufficient mastery over the isolated language of middle Hunza, Burushaski (Lorimer, 1938), to address an annual assembly in their language during his second year of office, but he and his wife "could have stayed as welcome guests in any house in Hunza" (authority: Haji Shah, Gulam Naseer's father).

According to Tytler (1926) Lorimer sent nine species. One, Parnassius discobulus barogil (now P. jacquemontii chitralensis Moore, 1902) was collected by Lorimer at the Baroghil Pass, eastern Chitral, on the border with Wakhan, Afghanistan. Parnassius simo lorimeri was collected on the Kine Chish Pass, on the border of Tribal Territory, south-west of Gilgit. The satyrid Eumenis lehena gilgitica (=Pseudocharara baldiva Moore, 1865) was collected by Lorimer at Ghizer, Gilgit. Five other butterflies, Parnassius discobulus hunzaica (=P. jacquemontii chitralensis), P. delphis chitrailica (=P. delphis hunza Grum-Grshimailo, 1888), Colias cocandica hinducucica, Karanasa regeli boloricus (=K. bolorica Grum-Grshimailo, 1888), and Eumenis lehena clarissima (=Pseudocharara baldiva Moore, 1865), were noted by Tytler as coming from "Misgar in Hunza". It is seldom that a mis-cited locality deserves a paragraph of its own, but Misgar is the exception.

The Misgar muddle

Several of the specimens sent by Lorimer to Tytler were published as "from Misgar in Hunza". At least two generations of lepidopterists interested in butterflies of Kashmir, later the Northern Areas of Pakistan, must have wondered about this extraordinary locality, Misgar: the senior author of this paper certainly did! A problem was that, after Lorimer's retirement, nobody seems to have continued his occasional butterfly collecting expeditions. Moreover, after 1948 the area west of what became the Karakoram Highway, along the Sino-Pakistan border, including Misgar, the Mintaka and Kilik passes, the Chipursun Valley with the Irshad Uwin Pass to Afghanistan, became off-limits to all foreigners, and to virtually all Pakistanis other than local residents. This restriction ruled out any access to the Mintaka and Kilik passes, ancient routes to and from China used for two millennia. For five years, from 1994 to 1998, we drove past the start of the jeep track to Misgar en route to Khunjerab (see Map 5), with regret. In June 1999, the restriction was lifted, and DSS and GN made a brief visit to Misgar (see Map 6, p. 51), but not beyond.

"Through the kindness of Lieut.-Col. D. L. Lorimer, C.I.E., late Political Agent of Gilgit, I have received numerous specimens of butterflies collected by himself and by the local inhabitants in out of the way and inaccessible places of the Gilgit Agency, and but for his kindness and the trouble he has taken on my behalf, the material which has made it possible for me to write much of these notes would never have been obtained".
The village of Misgar lies at 10,000ft, is heavily cultivated and irrigated (Fig. 8), and is disappointingly lacking entomological interest. Its historical importance lies in its being the first (and for many years the only) telegraph station in Hunza. Travellers entering this region of British India from China or Afghanistan invariably passed through Misgar; mail and telegrams were sent from Misgar before the traveller entered Hunza proper. Evidently the packages sent by Lorimer to Tytler bore some reference to "Misgar". In July 1999 a small room was seen, filled to the ceiling with files and ledgers, and it is very likely that all telegraphic correspondence from the opening of the Misgar office in 1916 is preserved: an historical ledgers, and it is very likely that all telegraphic correspondence from the opening of the Misgar office in 1916 is preserved: an historical gold mine that will require an accomplished historian to excavate.

Between the lists of Visser-Hooff and Lorimer, there is little overlap and together they record perhaps 33 butterfly species from Hunza. Unfortunately, few of these records include any useful locality data: even Visser-Hooff's specimens, collected in entirely new and extremely difficult localities, bear imprecise labels. John Clark (Clark, 1956) lived in Hunza in 1950 and sent a small group of butterflies to Carnegie Museum, Pittsburgh. These were mainly collected at Gilgit and in the Hunza Valley from 10,000 to 13,000ft, but few species were represented and these do not add to the earlier species count. Recently, Verhulst (1999) recorded 13 species from the Khunjerab region and eight from Deosai.

Collaborative work between Oxford University Museum of Natural History and Florida International University, and the Pakistan Museum of Natural History. After a preliminary field survey in July 1992, collaborative work was agreed between the Hope Entomological Collections, Oxford University, UK and the Pakistan Museum of Natural History, Islamabad, Pakistan (PMNH). The plan was to investigate the almost unknown butterfly fauna of Hunza, and selected side valleys (a) to fill this lacuna in knowledge of Pakistan's butterflies, and also (b) to determine the altitudinal zonation of species between 5000ft and 17,000ft, (c) to record species occurring within Khunjerab National Park and (d) to compare faunas of valleys adjacent to or parallel with Hunza, in quest of data on evolutionary divergence through isolation. It was agreed that after completion of taxonomic work on material collected, half would remain in the Oxford University Museum of Natural History, and half would be deposited in the Pakistan Museum of Natural History. A preliminary account of the early stages of the survey was published (Smith and Hasan, 1997).

TAXONOMIC LIST

Detailed records of the distribution of the following taxa are given in Table 1 (p. 54).

HESPERRIDAE

Eogenes alcides Herrich-Schäffer, (1852)) (Fig. 33a, b)

Range: Tshikolovets (2000) gives the range of this skipper outside Pakistan as Armenia, Azerbaijan, Turkey, each of the southern ex-Soviet Republics, Afghanistan and western China. Localities: Joglot (KKH).

For a butterfly with a very wide distributional range, our single record seems very inadequate. We collected a single specimen in July 1994 at the irrigated oasis of Joglot at 6000ft (where Eurema hecabe was found — see below) on our first field expedition; it was sought, without success, in this locality, and elsewhere, on each of six subsequent annual visits. It is probable we collected subspecies chitrala Evans, 1949; others have been described from the Transcaspian, Baluchistan and Xinjiang (Evans, 1949). Previous records for Pakistan are very sparse.

Eogenes leslei Evans, 1912

Range: Chitral, Malakand; Hunza.
Localities: below Minapin.

This species was first found by Leslie in several localities in Chitral from 4000-9000ft; also known from Malakand at low elevation (3000ft). Our record adds the species to the faunal list of the eastern Northern Areas: it was collected on a dry, rocky mountainside at 8000ft on the lower part of the track to Minapin (Nagar). The locality was revisited two years later, but E. leslei was seen neither there nor elsewhere.

Erynnis pathan Evans, 1949
Erynnis marloyi var. pathan W.H. Evans, A Catalogue of the Hesperiidae from Europe, Asia and Australia.

Range: Pakistan, NW India, Turkmnenistan, Afghanistan, Turkmenistan, Uzbekistan, Tajikistan.
Locality: Kargah.

This skipper was noted only once during our survey, a sight record at 9000ft in the Kargah Valley above Gilgit. Roberts (2001) lists it as E. marloyi as a widespread upland species, from Chitral, Waziristan, Kohistan and Baluchistan.

Pyrgus alpinus (Erschoff, 1874) (Fig. 27a, b)

Range: a widely distributed species, known from the Tien Shan, Pamir-Alai, Hindu Kush, the southern republics east of Turkmenistan, Afghanistan, the Karakoram, northern India and W. China. Localities: Fakar Peak, Muchuwar, Tharbai, Khunjerab, Mintaka Pass, Killik Pass, Irshad Uwin Pass.

A true high altitude member of the Hunza fauna, this skipper is known from the Muchuwar Valley (Nagar), the mountainside of Tharbai/Kalent above Sost, each at c.13,000ft. At higher altitude, it is common on the Khunjerab plateau (15,500ft) and on the slopes above the plateau, at times as common as Albula asiatica but is not found on the Karakoram Highway (KKH) leading to the plateau. It is again common on the Mintaka and Killik passes, and on the Irshad Uwin Pass above the Chipursun Valley, leading to Afghanistan, in each site at c.16,000ft. Roberts (2001) records center on northern Chitral, Yasin, west of Hunza, the Batura Glacier in Hunza and the "mythical" locality of Misgar (see above). The Deosai Plateau is also listed, but there a different species occurs (see next listing). The taxonomy of this and related taxa is complex, and Central Asian populations are poorly evaluated.

Plate 5. Hesperiidae: Fig. 27. a-b) Pyrgus alpinus, male. Fig. 28. a-b) Pyrgus casmirensis pseudoalpinus, male. Fig. 29. a-b) Pyrgus alpinus alchurenensis, male. Fig. 30. a-b) Hesperia comma comma, male. Fig. 31. a-b) Hesperia comma sandura, male. Fig. 32. a-b) Hesperia comma mixta, male. Fig. 33. a-b) Eogenes alcides, male. Fig. 34. Taractrocera donana, male. Figures about twice life-size.
Papilio polyctor Boisduval, 1836

Range: the nominate subspecies is common in valleys in northern India and Pakistan, generally to c.6000ft. Other races have been described across its very wide range in the Oriental region (D'Abbrevia, 1982).

Localities: Hoper.

Papilio polyctor is a common species in moister, southern stretches of the KKH, becoming rare north of Chilas, where the terrain becomes arid. A single specimen was seen on a grassy mountain slope above Hoper, in Nagar, in July 1995. This record, together with a specimen of the pierid *Catopsilia pyranthe* collected above Gulum, are the deepest incursions of Oriental species into the Hunza Valley noted during our survey, though in each instance as vagrants from lower altitudes. Both records were made at 9,000ft.

Papilio machaon Linnaeus, 1758

Range: It ranges throughout Europe into North Africa, and virtually across the whole of Asia.

This is the only Holarctic Swallowtail. Two subspecies are present in the New World: *alaska* Scudder from northern Canada and Alaska and *hudsonianus* Clark from the Hudsonian zone of north-eastern Canada.

Papilio machaon ladakensis Moore, 1884 (Fig. 35a, b, c)

Range: uncertain: see below.

Our most southerly record was c.125 miles (200km) south of Gilgit near Chilas, in Kohistan, at 2500ft. This swallowtail is widely distributed in Hunza between 4500ft at Gilgit, and 14,500ft above the floor of the Chapchingal Valley (Fig. 13). It was present below the Mintaka Pass in early September 1999, but was not recorded en
route to Kilik Pass in August 2000, in the Chipursun Valley or on the track leading to the Irshad Uwin Pass. It was not recorded from the Deosai Plateau during our visits. It is frequently seen nectaring, the track leading to the Irshad Uwin Pass. It was not recorded from much of the insect's range, the HW tails are uniformly long, but on wing pattern alone, and have used tail length as a character. Over Hunza specimens. We are unable to distinguish between these taxa named subspecies (Weiss, 1991), of which three have been recorded in Hunza. Subspecies P. m. ladakensis is generally much the faster species on the wing. These two species cease when the sun is obscured (all too frequent at Khunjerab). In the sun, it flies with a lower center of abundance. In each locality it flew with the more scarcer Parnassius actius, which is generally much the faster species on the wing. These two species are rarely sympatric with P. etlius, with a lower center of abundance. The next two subspecies of P. simo were found respectively about 50 direct-line miles west of Khunjerab along the Sino-Pakistan border, and about 125 miles to the southeast, above Skardu on the Deosai Plateau of Baltistan.

This race is very similar to, perhaps synonymous with, P. simo hilairei Kreuzberg, 1986, described from Tajikistan.

Parnassius simo loriemeriy Tyler, 1926 (Fig. 38) Parnassius simo loriemeriy, Tyler, H.C. J. Bombay Nat. Hist. Soc., 31:252, pl. 4, fig. 10.

Range: Chitral and Yasin Valley, east to Mintaka Pass.

The wing pattern of this subspecies is shown in Fig. 38. The type locality is the Kine-Chish Pass in Yasin, a valley system paralleling Hunza to the west. It has also been recorded from localities in Chitral (Weiss, 1991).

In our survey, it was never found in any localities associated with the main Hunza Valley, and was not recorded at the Kilik Pass in 2000. However, it was present at the beginning of July 1999 at Kilik Pass, and both there and at the Mintaka Pass early in September of the same year. All records were made at or near the summit of each pass, at c. 16,000ft, maintaining its reputation as a very high altitude butterfly (Weiss, 1991). In each locality it flew with the much scarcer Parnassius actius, and at the Kilik Pass with the more common Parnassius jacquemontii.

Parnassius simo ganymedes Bryk and Eisner, 1932 (Fig. 39) Parnassius simo ganymedes F. Bryk and C. Eisner, Parnassiana 2:8.

Range: Deosai, Baltistan
Localities: above Deosai Plateau.

The wing pattern of this subspecies is shown in Fig. 39. This race has a restricted range, known only from Baltistan. This third subspecies of P. simo, morphologically very distinct from the first two, was collected above the Deosai Plateau of Baltistan, at or over 15,000ft. It was recorded on scree slopes adjoining glaciers above the plain. Again, it is evidently a high altitude insect, not recorded from numerous sites on the plateau at c. 14,000ft; not sympatric with

Parnassius simo ganymedes Bang-Haas, 1937 (Fig. 37) Parnassius simo ganymedes Bang-Haas, O., Int. Ent. Zeit. 51 (No.32):302.

Range: Weiss (1991) cites this subspecies from the Karakoram to Ladakh.
the common *Parnassius ethlius*, and possibly not with the Deosai subspecies of *Parnassius delphius* (below).

Parnassius charltonius Gray, 1852

Range: *Parnassius charltonius* has about the same number of named subspecies as *P. simo*.

Weiss (1991) lists the distribution of races within the *charltonius*-Group as including northeastern Afghanistan, Kirghizia, Tajikistan, the Karakoram to northern India, Nepal and Tibet.

Parnassius charltonius dekerty Verity, [1907]) (Fig. 36)

Range: this race is known from eastern Pamir and Hindu Kush, and the southern region of the Sarykolsky mountain range in Tajikistan (Tshikolovets, 1997).

Localities: Minapin, Muchuwar, Tharbai, Hunza Valley. Early Hunza record: Evans (1927: as *Parnassius charltonius*).

Of the various morphs, this subspecies matches most closely specimens from Hunza (Fig. 36), where it occurs within a narrow altitudinal zone from 10,000ft to 11,500ft. It was found sparsely above Minapin (Nagar) and at Muchuwar, commonly on high mountainside pasture at Tharbai above Sost, and was recorded once above Minapin (Nagar) and at Muchuwar, commonly on high altitudinal zone from 10,000ft to 11,500ft. It was found sparsely above Minapin (Nagar) and at Muchuwar, commonly on high mountainside pasture at Tharbai above Sost, and was recorded once.

The BMNH collections include a specimen of *P. charltonius dekerty* from "W. Karakoram, Shimshal, 3500m, July 1925". The remote Shimshal Valley is reached on foot by a journey of several days from the Hunza village of Pasu, and lies to the south of the Chagchingsal Valley (Fig. 13). No collector's name is attached to the specimen, but the labels indicate a Continental collector. Although Visser-Hooft's material sent to Evans (1927) did not mention *Parnassius charltonius* it is very likely that this specimen was collected by Janet Visser-Hooft, and somehow omitted from the parcel sent to London, or there overlooked. We did not visit Shimshal during our survey.

Parnassius charltonius ella Bryk, 1932

Range: Deosai, Baltistan.

Locality: Deosai Plateau.

Verhulst (1999) recorded this race from Deosai. It is quite distinct from *dekerty*, the subspecies occurring in Hunza: in *ella* the red markings near the anal edge of the HW, prominent in *dekerty*, are almost or completely absent. Also, the HW arc between the blue/black submarginal spots and the large red spot is suffused with grey in *dekerty* but forms a whitish band in *ella*.

Parnassius jacquemontii Boisduval, 1836

Range: a species with an extremely wide distribution including the Tien-Shan, Pamir-Alai, Afghanistan, Hindu Kush, the ex-Soviet Southern Republics, Himalaya, Kun-Lun, and Tibet.

Parnassius jacquemontii chitralensis Moore, 1902 (Fig. 40a, b)

Range: beyond Pakistan, this subspecies is known from several regions of the Tajik Pamir, and Uzbekistan.

In Pakistan, this subspecies seems to be very local, in sites of similar altitude. We never encountered it at Khunjerab, but in July 2000 and July 2001 it was the most frequent *Parnassius* at the Irshad Uwin Pass on the border with Wakhan, Afghanistan, and also to 16,000ft below the Dilsun Pass ENE of Irshad Uwin. It was frequent on the Kilik Pass in early July and early September 1999. A male was found in the water of a blue pan-trap at Luto Hari (15,000ft). Roberts (2001) notes it as occurring in the Barogih Valley, leading to the Afghan border west of Irshad Uwin, and from the Shandur Plateau, Chiral. Numerous other subspecies have been named. Sakai (1981) cited four subspecies from Afghanistan, and Wyatt and Omoto (1966) added a fifth: these, Tshikolovets regards three as synonyms of *P. j. chitralensis*. Furthermore, two other taxa with Hunza connotations are similarly synonymized by Tshikolovets: *P. discobulus hunzaica* Tytler, 1926 and *P. tianschanica hunzaica* Tytler, 1926.

Parnassius epaphus Oberthür, 1879

Parnassius epaphus cachemiriensis Oberthür, 1891 (Fig. 42a, b)

Range: Pakistan

Localities: Fakar Peak (Nagar), Khunjerab, Deosai Plateau. Early Hunza record: Evans (1927) as *Parnassius epaphus*.

Within Pakistan, this subspecies is widely, though irregularly distributed, and scarce. It is the most common *Parnassius* at Khunjerab, frequent on the plateau at 15,000-15,500ft when nectar sources are plentiful, but always more common on the mountain slopes above the plateau, to at least 16,000ft (Fig. 16). It was uncommon at 15,000ft on Fafar Peak in July 2003. Its flight is slow and fluttering when searching for nectar, but when disturbed, or when caught in a wind gust common on the pass, its movement is very rapid. At the higher elevations at Khunjerab, it is barely distributed, and scarce. It is the most common member of the genus, at 14,000ft, and Deosai specimens are structurally and morphologically indistinguishable from those from Khunjerab. Any divergence might be sought at the level of molecular genetic analysis, though it should be noted that Nice and Shapiro (1999, 2001) found morphological divergence in the absence of genetic variation in some Rocky Mountain lycaenid populations. Visits to the Irshad Uwin Pass on the border with Wakhan, Afghanistan, in September 1999, July 2000, and July 2001 there and across the border, failed to record *P. epaphus*, when *P. actius*, *P. delphius hunza* and *P. jacquemontii* were present. *Parnassius epaphus* was recorded neither from Mintaka Pass nor Kilik Pass in July 2000.

Infraspecific taxonomy of this species is less than clear. Moore
(1901-03) described *P. narius* from Ladakh, and cited the Deosai Plateau as one of its localities. As mentioned above, specimens from this locality are indistinguishable from Khunjerab specimens. However, Bingham (1907) noted: "I do not think that narius can be separated from epaphus, even as a race." Tshikolovets (1997) regarded specimens from the Hindu Kush and Pamir as *P. e. cachemirensis* (= *P. e. hinducucicus*, Bang-Haas, 1934) and populations from Khunjerab and Deosai conform precisely to this race.

Parnassius delphius (Eversmann, 1843)

Range: Weiss (1992) separates members of the *delphius* Complex from taxa associated with *Parnassius staudingeri* Bang-Haas, 1882 (= *P. delphius staudingeri*). Together, these butterflies have an extremely wide distribution.

Species associated with *P. delphius* have a generally more northern distribution than Weiss’ *staudingeri* group: from southern and south-eastern Kazakhstan, Kirghizia, eastern Uzbekistan and north-western Sinkiang (Xinjang), China. Some members of the second group extend into Tajikistan, Afghanistan and from southern Pamir into Pakistan. We follow the scheme of Tshikolovets (1997) in which all of these taxa are grouped together as races of *delphius*.

Parnassius delphius hunza Grum-Grshimailo, 1888 (Fig. 43a, b)

Parnassius delphius or *P. staudingeri* (in the scheme proposed by Weiss (1992)) is a complex assemblage of over twenty taxa, within which Weiss suggests that several true species may be present. Some confusion surrounds the type-locality of *P. delphius hunza*. It was described by Grum-Grshimailo from “Hindukush orient”, but its provenance was discussed more fully in a later paper (Grum-Grshimailo, 1890) when he indicated that the original specimens had been collected at Beik (= Bayik) beyond the ‘Kounjout’ mountains near pastures supporting the horses of nomadic Kirgiz. The accompanying map suggests that the specimens came from well east of Shimshal (northeast Hunza), in Chinese territory, and the Beik Pass is just east of the border between the Wakhgan corridor and China. Tshikolovets (1997) suggested that the type-locality be amended to “Khan de Kounjout (Hunza)” but we feel that this is inappropriate. It is certain that neither Grum-Grshimailo nor any entomologist entered Hunza during the nineteenth century.

However, the name *hunza* has become an excellent descriptor, since during our survey we recorded this butterfly from more localities than any other *Parnassius*, and over a wider altitudinal range. On a pasturing site locally named Tharbai, on steeply sloping grassland above Sost, at 12,000ft, this insect was common at the terminal stony moraine of a small glacier, flying some distance from a colony of *Parnassius charltonius dekerty*: the two were not sympatric. It was the only *Parnassius* recorded, very sparsely, from the Chapchingal Valley at 14,000ft (Fig 13) leading north-east from the KKH below the Khunjerab Plateau. *P. delphius hunza* was found very rarely at Kilik Pass (July and September, 1999) but was unrecorded from the nearby Mintaka Pass. Its center of abundance, during our survey, was the Irshad Uwin Pass, between Pakistan and the Wakhcan corridor of north-eastern Afghanistan, where it was very common in July 2000. It was not recorded across the border in Afghanistan in July 2001 though it doubtless occurs there. It was again common at 15,000-16,500 ft below the 18,000ft Dilsun Pass in late July, 2002. Below 16,000ft it flew with *P. jacquemontii*. Roberts (2001) adds high elevation sites in northern Chitral, and in the Astor District.

Parnassius delphius workmani Avinoff, 1916 (Fig. 44)

Range: known from vicinity of Saltoro Glacier, Baltistan; Deosai Plateau. Localities: Deosai Plateau.

This race of *P. delphius* is significantly different in appearance from that described above. Weiss (1992) regards it as barely meriting separation from subspecies *mamaievii* Bang-Haas, 1915 from Ladakh., but notes that it might be regarded as a good species. It occurred on the Deosai Plain, Baltistan; rarely at the level of the plateau, 14,000ft, and more commonly at 15,000ft on the relatively low mountains rising above the plateau.

Parnassius actius (Eversmann, 1843)

Range: this species ranges very widely in Central Asia. The regions listed by Tshikolovets (1997) include the Tien Shan, Pamir-Alai, eastern Hindu Kush, Karakoram, Kun Lun, the Southern Republics east of Turkmenistan, Afghanistan, northern India and the Muztagh-Ata massif of Sinkiang (Xinjiang), western China.

Parnassius actius catillina Eisner & Peschke, 1934 (Fig. 45a, b)

Range: this subspecies was described from the "Doubounni-Berge" [Gilgit Agency]. It is the race found in high localities during our survey. Localities: above Khunjerab Plateau, Mintaka Pass, Kilik Pass, Irshad Uwin Pass, below Dilsun Pass. At Khunjerab, it was never recorded from the patchily vegetated plateau, but only from mountainsides and scree slopes rising above the plain, at least to 16,500ft (Fig. 16). In this zone, plants are not obvious at a distance, but dwarf specimens of *Saussurea simpsoniana* (Fig. 15), *Arenaria polytrichoides* and *Oxypotis microphylla* subsist between rocks and provide a nectar source for butterflies inhabiting these harsh sites. Here, this species flies with *P. simo sasserensis*: both well above the usual flight zone of *P. epaphus*. Its flight is considerably more rapid than that of *P. simo*. It also occurred at both the Mintaka and Kilik passes and, more sparsely, at the Irshad Uwin Pass to Afghanistan. It was recorded rarely below the 19,000ft Dilsun Pass at the extreme eastern limit of Pakistan border with the Wakhcan corridor of Afghanistan. Here, at 16,000ft, it flew with the much commoner *P. delphius hunza* and *P. jacquemontii*, all above the upper limit of ground cover.

Parnassius hardwickii Gray, 1831 (Fig. 41)

We found this species only on the Deosai Plateau and above, to 15,000ft, and there only rarely. Search for *P. hardwickii* on the high passes around Hunza was unsuccessful. Very surprisingly, Roberts (2001) regarded this species as "... the most likely Apollo to be
encountered. " as low as 10,000ft in the Muree Hills; also known from Chitralt, the Kagan Valley, and Astor (Gilgit). If Roberts' comment is not based on misidentification it is possible that the Deosai records mark the altitudinal limit in Pakistan of a generally low altitude species. If so, it seems remarkable that it does not seem to have become established in any Hunza localities.

PIERIDAE

Catopsilia pyranthe (Linnaeus, 1758)

Range: entire Oriental region including much of Pakistan; absent from Andamans, Nicobars and Sri Lanka.

Localities: Gilgit, Upper Hunza above Gulmit.

Two specimens were recorded above Gulmit, the main Hunza Valley in July 1994. This record, and the sight record of Papilio polyctor, both at 9,000ft, mark the highest altitude at which Oriental was encountered. Catopsilia pyranthe has been found occasionally around Gilgit (5000ft) but was never common.

Euchloe (ausonia) daphalis (Moore, 1865) (Fig. 55a, b)

Range: western Pamir, northern Afghanistan, northern Pakistan, northern India.

Localities: Nilt, Murtazabad.

In Hunza this species was recorded only twice: a single specimen was collected along the KKH in the Hunza Valley near Nilt, 10 April 1986, at 6000ft, and a second in April 1999 at Murtazabad, middle Hunza. As noted in the original description, this is an early Spring butterfly. This species is very similar to E. ausonia Hübner, 1803, and E. pulvata Christoph, 1884, and pending further taxonomic work, all may be considered to be constituents of the superspecies ausonia (Tuzov et al., 1997).

Metaporia leucodice (Eversmann, 1843) (Fig. 47a, b)

Range: Iran, Turkmenist, Afghanistan, Central Asia to Altai and western China.

Localities: Kargah, Naltar, Chaprot, Minapin, Muchuwar.

This species is locally common, but within a precisely defined altitudinal zone of between 6500 and 11,000ft. Not recorded from the main Hunza Valley, it has been found very sparsely in the Kargah Valley above Gilgit, and more commonly in the Naltar Valley, Chaprot/Nagar, Minapin and Muchuwar. In July 1994 all specimens were very fresh, and others collected later in the summer have shown little signs of flight damage. Roberts (2001) lists it as common in the Muree Hills in April and May; also in Chitralt and Kaghan, rarely in Lahore and very locally in Baluchistan. Subspecies have been described from the Tien Shan, Alai and western Pamir (Tuzov et al. 1997), but populations in Pakistan are of nominate leucodice.

Pontia callidice (Hübner, [1800])

Range: Pontia callidice ranges very widely from the mountains of Europe — Alps and Pyrenees — in the Balkans, the Caucasus, the Urals and high altitude and Arctic regions of Palaearctic Asia

Pontia callidice kalora (Moore, 1865)

Range: widespread in the southern Pamir, Afghanistan, extreme SW China (Xinjiang) and northern Pakistan.

In Hunza, as elsewhere in the western Himalaya, this is a relatively high altitude insect. The lowest altitude record is 9000ft at Chaprot, Nagar, above the main Hunza Valley, lower than the 3500m (11,500ft) noted by Tshikolovets (1997). It has been recorded from all high altitude sites: from Sost and the Hunza Valley beyond, from the lower areas of Khunjerab National Park (11,500ft and above), from Chapchingal Valley (13,000ft), Khuinjerab Plateau (15,500ft), Mintaka and Kilik passes (15,000-16,000ft), Irshad Uwin Pass (16,000ft), below Dilsun Pass and, to the southeast, the Deosai Plateau in Baltistan (14,000ft). It is never common; adults are especially scarce at the highest altitudes, and its distribution is not immediately dependent on irrigation and human presence. Tuzov et al. (2000) suggest that some 'subspecies' described are probably merely varieties, but P. callidice kalora Moore, 1865 is generally more lightly marked than European populations of the nominate race, though all show seasonal variation.

Pontia daplidice (Linnaeus, 1758)

Range: this butterfly has a very wide range, including most of Europe (with very occasional records in Britain), North Africa, and much of Palaearctic Asia to Tibet, China and Japan.

This is generally a low altitude species in our area, occurring from around Gilgit (4500ft), in the Naltar Valley and at Chaprot (Nagar); also at irrigated settlements along the KKH, but not recorded within Khunjerab National Park, the southern limit of which lies at ca. 11,500ft. However, it has been found on the Deosai Plateau of Baltistan at 14,000ft. It is common where it occurs, and its distribution is largely, but not entirely tied to human presence and irrigation, as for the next species. Roberts records it as very common in Swat, less so in the Muree Hills, and above 5000ft in Baluchistan. A form or subspecies moorei Rober, 1906 was described as being very large, with the green underside markings much extended. However, this is a variable species, more heavily marked in spring than summer broods, and this separation is probably unjustified.

This species is associated in a species complex with a parapatric species Pontia edusa (Fabricius, 1777), and the two can be reliably identified only by electrophoretic techniques (ref in Tuzov et al., 1977). This is not known to affect any population in our area, and the known range of P. edusa is temperate Europe and Siberia.

Pontia chloridice (Hübner, [1808-1813])

Range: an Holarctic species ranging from central and western North America in the New World, and in the Palaearctic from the southern Balkans to southern Central Asia, Mongolia and southern Siberia.
Plate 7. Pieridae: Fig. 46. Eurema hecabe, male. Fig. 47. a-b) Metaporia leucodice, male. Fig. 48. Pieris krueperi, male. Fig. 49. Pieris deota, a) male, b) female. Fig. 50. a-h) Colias cocanica kunjerabi, a-b, f) female, c-e, g-h) male. Fig. 51. Colias eogene shandura, a) male, b-c) female. Fig. 52. Colias wiskotti, a) male, b-d) female. Fig. 53. Colias marcopolo, a-b) male, c-d) female. Fig. 54. Baltia shawi, male. Fig. 55. a-b) Euchloe (ausonia) daphalis, male.

Despite one of its infraspecific names (alpina), this insect does not occur at the highest altitudes. It was found on the approaches to the Irshad Uwin pass to Afghanistan, above the Chipursun Valley (Fig. 7) at 12,000ft; otherwise, P. chloridice has been recorded from the cluster of medium altitude localities from 7000ft in the Kargah Valley above Gilgit, from Naltar, Chaprot, Muchuwar and Hoper, to 10,000ft. Populations in Pakistan were separated as subspecies alpina Verity, 1911 but neither D’Abrera (1990) nor Tuzov et al. (1997) recognize this taxon.

Pieris krueperi Staudinger, 1860 (Fig. 48)

Range: from southern Europe through Transcaucasia to Asia Minor and Central Asia.
Localities: route to Minapin.

In our survey, this was an extremely local species and found on only two occasions, in Nagar on the lower course of the route to Minapin, at 7000ft. The terrain was extremely arid, with few plants.
The hesperiid *Eogenes leslei* was one of the few other butterflies recorded in Hunza, and its breeding grounds, remain undetected. These specimens probably represent the nominate subspecies rather than the lightly marked *P. kreuperi* *devta* de Nièville, 1884, but the species shows great seasonal variation and infraspecific division may be unjustified.

Pieris brassicae (Linnaeus, 1758)

Localities: recorded from every locality visited in the Hunza region.

This species, with *Vanessa cardui*, were the only two taxa recorded from every locality in Hunza, and in each side valley visited. *P. brassicae* is most abundant around villages, with irrigated fields, but is also found straying into arid terrain between settlements. It occurs sparsely in upper Hunza above Sost, within Khunjerab National Park, and has been recorded occasionally on the Khunjerab Plateau at 15,500 ft. It is sympatric, over a very narrow zone, with the next species. Pending further work, populations in northern Pakistan are assigned to the nominate subspecies; others have been described from Kopet-Dagh and the Tien Shan, and Alai/western Pamir (Tuzov et al. 1997).

Pieris deota de Nièville, 1883 (Fig. 49a, b)

Manucipium deota De Nièville, C.L.A., J. Asiat. Soc. Bengal, Pt. II (1883), 53:82, Pl.XIX, fig.10.

Range: Pamir, eastern Hindu Kush, Karakoram, northern Tien Shan, western China (Xinjiang), Tibet.

Evans (1927) suggested that this butterfly, if not sympatric with *Pieris brassicae*, might be considered a subspecies of the latter. However, it is now recognized as a species, and in the main Hunza Valley is narrowly sympatric with *P. brassicae* in the vicinity of Barkhun, between the narrow altitudinal limits of 11,500 ft and 13,000 ft. The two species were also recorded together at Misgar, at 10,000 ft. *P. deota* has not been recorded in the Chapchingsal Valley above 13,000 ft, or higher on the Khunjerab Plateau, where *P. brassicae* has been noted. Its flight pattern matches that of *P. brassicae* precisely; both may be seen flying across open, arid stony hillsides. Outside, *Pieris deota* was also recorded from the Mintaka Pass (to China) and the Irshad Uwin Pass (to Afghanistan) (Fig. 22) at similar altitudes, to 12,000 ft.

Pieris rapae (Linnaeus, 1758)

Range: distributed across the entire Palaearctic other than the extreme north and south, and introduced into North America.
Localities: all sites in the Hunza region to 11,000 ft. Early Hunza record: Evans (1927).

This pest species is abundant in the Hunza Valley system to ca. 10,000 ft. It is very much a butterfly of cultivated and irrigated land, recorded from all localities from Gilgit (5000 ft) along the Hunza Valley to Sost (10,000 ft). It has not been found above Sost, or in Khunjerab National Park. Its presence in the Chipursan Valley below Irshad Uwin Pass at 11,000 ft marks the highest record for *P. rapae*; this was around a small settlement at Zutar and no butterflies were recorded from the surrounding extremely and terrain.

Several subspecies of uncertain validity have been proposed (Tuzov et al., 1997) and we regard Hunza specimens as nominate *P. rapae*.

Pieris canidia Sparrman, 1768

Papilio Conidia Sparrman, A., Amoen. Akad. 7:504.

Range: this Palaearctic species occurs in Afghanistan, and from Pakistan to Sikkim, and in Bhutan, from 2000 to 11,000 ft, in the hills of southern India, in Assam, Upper Burma, the Shan States and into western China (Bingham, 1907), and Japan. Its range also includes the mountains of Central Asia, including Afghanistan and Tibet.
Localities: Naltar; Deosai Plateau.

Surprisingly, we found *P. canidia* only twice: one specimen was recorded above Gilgit in the lower Naltar Valley at 6000 ft, and another on the Deosai Plateau at 13,500 ft. It is generally common in Pakistan; Roberts (2000) notes it from Chitral, Swat, the Murree Hills, northern Baluchistan, and occasionally as far south as Lahore.

Colias fieldii Ménétriers, 1855

Colias Fieldii. Ménétriers, E., Enumeratio corporum animalium musei imperialis Academiae Scientiarum Petropolitanae, 1:79, pl.1. fig.5.

Range: widely distributed in Nepal, Bhutan, Afghanistan, the SW Pamir (Tajikistan), southern Uzbekistan and Pakistan and northern India to Assam, and northern Burma.
Localities: most sites in the Hunza region to 11,000 ft; Deosai Plateau. Early Hunza record; Evans (1927); as *Colias croesus* FOURIER.

This species, and the next, are widespread in Hunza and side valleys, at low to moderate elevation, never flying with the high altitude species *C. cocandica, C. eogene* and *C. marcocupola*. *Colias fieldii* is most abundant in irrigated areas near settlements, especially in fields with legumes, but also extends sparsely along roadsides and in arid hill slopes. It occurs in the heavily cultivated areas of the Chipursan Valley (Fig. 7), but was not recorded along the uninhabited route to Kiliq and Mintaka passes. It occurs sparsely on the Deosai Plateau at 13,500-14,000 ft, an elevation far greater than in any Hunza localities, although Verhulst (2000) found it at 4900 m (16,100 ft) in Nepal. Elsewhere in Pakistan it occurs in the Murree Hills, Swat, Hazara and Chitral, in northern Baluchistan and at times as far south as Lahore (Roberts, 2001). Roberts suggests that this species is "less adapted to dry areas than *Colias erate,*" but both are equally frequent in arid sites in Hunza.

Colias erate (Esper, 1805)

Papilio Erate Esper, E.J.C. Auslandische Schmetterlinge Suppl. 1(13), PI.119, fig.3.

Range: this species is widely distributed from Eastern Europe to southern Siberia, the Pamir and Altai, Afghanistan, western China, Mongolia and Japan. According to Roberts (2000), its distribution in Pakistan is similar to that of *C. fieldii*, but it occurs throughout Baluchistan, and was collected by Swinhoe (1887) at Karachi.
Localities: most Hunza localities to 11,500 ft; Deosai Plateau. Early Hunza record; Evans (1927); as *Colias hyale* LINNAEUS.

It flies with the last species in Hunza and associated side valleys, and is perhaps more common than *C. fieldii* in the lower localities. At 11,500 ft, it has been recorded within the limits of Khunjerab National Park. Both are common in irrigated areas, nectaring on cultivated plants but also extend onto dry mountain slopes. With the last species, *C. erate* occurred around settlements along the Chipursan Valley; it was common at Misgar, but was not found beyond this village on the arid, unpopulated route to Mintaka and
Kilik passes. It joins C. fieldii as occasional on the Deosai Plateau, to 14,000ft, much higher than in Hunza localities. The white/cream female form pallida is as common as the typical form in all populations. According to Roberts (2001) its distribution in Pakistan is similar to that of C. fieldii but it occurs throughout Baluchistan and was collected by Swinhoe (1887) at Karachi. Verhulst (2000) lists the nominate race and no fewer than nine generally unimpressive subspecies, differing one from another primarily in size and the degree of spotting (if any) in the black borders on the male upperside. Colias erate lativitta was described by Moore (1882) from Nepal, also occurring in Ladakh and Kashmir, and is the race from the Hunza area. However, it differs little from nominate erate; moreover, the FW border in the male is unspotted though Verhulst confusingly illustrates specimens with conspicuous spotting (Plate 5). Neither Tshikolovets (1997) nor Tuzov et al. (1997) recognize any subspecies, and this may be the most prudent course.

Colias cocandica Erschoff, 1874

Colias Nastes var. cocandica Erschoff, N.G. in: Fedtschenko, A.P., Journey to Turkestan, 2-6, pl. 1, fig. 3.

Range: Colias cocandica has a very wide range, including each of the ex-Soviet southern republics east of Turkmenistan, Afghanistan, western China, northern Pakistan and northern India.

Colias cocandica kunjerabi Verhulst, 1999 (Fig. 50a-h)

Range: Kunjenrab region.

This race was recently described from the population at Khunjerab. In a very detailed monograph of the genus, Verhulst (2000) notes that “great confusion has always governed the exact distinction of the described subspecies of C. cocandica.” He recognized 5 subspecies in addition to the nominate race. Moreover, a group of populations formerly regarded as part of the cocandica complex were separated as distinct species: C. tamerlana, C. tibetana, C. grumi and C. tarsibusulis, all except tibetana possessing one or more subspecies. In the past, specimens from northern Pakistan have generally been assigned to subspecies hinduucica (see Tshikolovets, 1997), but we will follow Verhulst in attaching the new name kunjerabi to populations from the Khunjerab Plateau, Kilik and the Irshad Uwin passes. This race was separated primarily through its heavy black scaling on the upper surface, particularly in males. Illustrations in Plates 44 & 45 in Verhulst support this distinction to a degree, but some overlap with cocandica is obvious, and individuals from the type locality of subspecies kunjerabi certainly accord with Verhulst’s summary that these Colias form an extremely variable complex: the range of phenotypic variation is suggested in Fig. 50a-g.

Tshikolovets (2000) notes that populations of the nominate race from Central Turkestan Mountains of Uzbekistan are unusually dark in color, a feature “... often observed in this part of Pamir-Alai for numerous butterfly species, i.e. Pseudochara turkestan, Hyponephlela laeta, H. hilaris, H. tristis, Melitaea sultanensis, Hyrcana sartha”. Each of the individuals used by Tshikolovets to illustrate C. cocandica cocandica in Uzbekistan could readily be matched by a specimen from Khunjerab. It is possible that further information on the infraspecific divisions of C. cocandica might stem from molecular genetic techniques, though the findings of Nice and Shapiro (1999, 2001) that phenotypic and structural divergence may occur before genetic divergence provide a caveat.

Colias cocandica well exemplifies the confusion over the collection site of early specimens sent to the British Museum (Natural History). Roberts (2001) proposes that “... Within Pakistan territory it has only definitely been collected from Misgar in northern Hunza”. He cites Tytler’s (1926) account of butterflies collected by Janet Visser-Hooff for this record but, as shown above, the village with postal and telegraph facilities became transmuted into a “collecting locality” for several species. It is certain that Colias cocandica never occurred anywhere near Misgar, in the 1920s or now. Its distribution at high altitude along the Sino-Pakistan border is very patchy. It is much more common than C. eogene at 15,500ft on the Kunjerab Plateau at times when nectar is plentiful, and abundant on mountain slopes above the plateau, to over 16,000ft, considerably higher than Verhulst’s records. It was rarely seen at the Kilik and the Irshad Uwin passes at ca. 16,000ft; in these localities it flew with the much commoner C. eogene. Its flight is low and erratic, but often blown by the high winds that are frequent on these exposed passes.

Colias eogene C & R Felder, 1865

Colias eogene, in: Reise der österreich. Fregatte Novara um die Erde in den Jahren 1857, 1858, 1859. 2:196, pl. 27, fig. 7.

Range: the nominate subspecies is widely distributed from the Hindu Kush, Tien Shan and Himalaya.

Colias eogene shandura Evans, 1926 (Fig. 51a-c)

Range: northern Pakistan.

On the Khunjerab Plateau, C. eogene is much scarcer than C. cocandica, but was the most frequent Colias at c.16,000ft on the Kilik and Mintaka passes in July/August, and on the Irshad Uwin Pass, on the border with Wakhan, Afghanistan, in July. The lowest elevation at which we found this species was 13,000ft at Shirin Maidan, on the Kilik route (Fig. 18). It was frequent at 13,500-14,000ft on the Deosai Plateau (Balistan). It was less common than C. marcopolo at 15,000-16,000ft below the Dilsun Pass in late July, 2002. Elsewhere in Pakistan (Roberts, 2001), it occurs at high elevation in Chitral. Subspecies shandura was described from specimens collected in Chitral Province; Verhulst (2000) lists four other named races, but differences between them are less than dramatic (Verhulst, Pl.58, 59).

Colias marcopolo Grum-Grshimailo, 1888 (Fig. 53a-d)

This species was recorded in present Pakistan by Evans (1926), from the border between Yasin and Chitral, west of Hunza, as late as September. During seven annual visits to Khunjerab, it was never recorded. Its center of distribution is evidently the Pamir, the Afghan Hindu Kush and Tajikistan (Tshikolovets, 2000). In August 2000 it was frequent on the summit of Kilik Pass (16,000ft) but was not found on the Mintaka Pass to the east. It also occurred on the Irshad Uwin Pass on the border between Pakistan and Wakhan, Afghanistan, where it was less frequent than C. eogene. Below Dilsun Pass, at 15,000-16,000ft, it was more common than C. eogene in late July, 2002. Across the border, in Wakhan, it was found in July 2001. Populations elsewhere in Afghanistan represent...
a distinct race *kushana* Wyatt & Omoto 1966.

At the Dilsun locality, as elsewhere, males were dimorphic. Most were typical (Fig. 53a): yellow upperside without cell spot, and a yellow-orange morph (Fig. 53b) with a conspicuous cell-end spot as in the female.

Gonepteryx rhanni (Linnaeus, 1758)

Range: with a very extensive Palaearctic distribution, this species ranges from Europe, North Africa, Asia Minor, the Caucasus, Siberia and Central Asia.

Localities: Kargah, Chitral.

In our survey, *G. rhanni* was found in only two localities: commonly at 7500-9000ft in the lower Kargah Valley, and sparsely at Minapin (Nagar) at 10,000ft. In both localities it flew in thinly wooded open terrain; only the former was irrigated. Elsewhere in Pakistan it reportedly occurs (Roberts, 2001) in the Murree Hills, Hazara, Swat, Chitral, and in the juniper forests of Ziarat, Baluchistan. It is also known from Astor, and from Chilas, south of Gilgit, but we did not see it there. The related *Gonepteryx fariossa* Zeller, 1847, widely distributed from the Balkans, Bulgaria, Greece, Turkey, the Levant, Iran, Iraq, much of ex-Soviet Central Asia, eastern Afghanistan and northern India. For Pakistan it is recorded by Roberts as rare, from Mastuj, Chitral Province; we never encountered this species in Hunza or adjacent valleys.

Eurema hecabe (Linnaeus, 1758) (Fig. 46)

Range: occurs widely throughout the Ethiopian and Oriental regions.

Locality: Joglot, Gilgit District.

Roberts (2000) reports its distribution in Pakistan as extensive in Punjab and Sind provinces, cultivated areas of North West Frontier Province, and in a locality in Baluchistan. He records its spread into foothill valleys with rice cultivation, and its preference for damp, grassy sites.

We recorded this Oriental species at only one site: along the KKH beyond Gilgit at the village of Joglot, at 6000ft, at the edge of irrigation channels where it was locally common in July 1994. It was not seen in subsequent years in this locality. This wet oasis is of irrigation channels where it was locally common in July 1994. It was not seen in subsequent years in this locality. This wet oasis is of irrigation channels where it was locally common in July 1994. It was not seen in subsequent years in this locality. This wet oasis is of irrigation channels where it was locally common in July 1994. It was not seen in subsequent years in this locality. This wet oasis is of irrigation channels where it was locally common in July 1994. It was not seen in subsequent years in this locality. This wet oasis is of irrigation channels where it was locally common in July 1994. It was not seen in subsequent years in this locality. This wet oasis is of irrigation channels where it was locally common in July 1994. It was not seen in subsequent years in this locality.

SATYRIDAE

Lasiommata menava Moore, 1865 (Fig. 56)

Range: a species with an extensive distribution (Tshikolovets, 2000) from Azerbaijan, Iran, Turkmenistan and the other southern republics, Afghanistan, the Karakoram and northern India.

Localities: Kargah, Naltar, Chapsor, Muchuwar, Hunza Valley.

It was locally common in several Hunza localities: in the Kargah and Naltar valleys, at Chapsor, in the Muchuwar Valley, and occasionally along the main KKH in the Hunza Valley south of Sost. Records were for July and August, at an altitude of from 7000ft to 10,000ft. Elsewhere in Pakistan Roberts (2001) records this butterfly as uncommon, from the juniper forests of central Baluchistan, and around Drosch, Chitral, between 6000ft and 9000ft.

Lasiommata schakra (Kollar, 1844)

Range: from the Karakoram this species extends eastwards into the Great Himalaya.

Localities: Kargah, Chaprot.

In our survey, *L. schakra* was encountered in only two localities: in the Kargah Valley above Gilgit at 7500ft, and at similarly low elevation on the track to Chaprot (Nagar). Elsewhere in Pakistan Roberts (2000) records it from northern Baluchistan and Chitral, from 6000ft to 9000ft.

Pseudochara baldiva Moore, 1865

Range: apart from Pakistan, this satyrid ranges from the Pamir, eastern Hindu Kush, Afghanistan, Tajikistan, Ladakh and northern India (Tshikolovets, 1997), also in Tibet.

Localities: Minapin, Muchuwar, Hopar, Thrabe, the main Hunza Valley, approaches to Kilik and Irschad Uwin passes. Early Hunza records: Tytler (1926): as *Eumenis lehana clarissima* Seitz; and Evans (1927): as *Eumenis minssieceh lehana* Moore.

We recorded *P. baldiva* from several side valleys in the Hunza region, from the approach to Kilik Pass, and most commonly on the approach to the Irshad Uwin Pass up to 12,000ft. Roberts (2000) lists both this species and *P. lehana* Moore, 1879; D'Abrera (1992) illustrates both but notes that *lehana* may be synonymous with *baldiva*, and Tshikolovets (1997) follows this course. Roberts notes *P. baldiva* also from central Baluchistan, and Baltistan from 4000ft to the Shandur Plateau (Chitrail) at 13,000ft. Populations in northern Pakistan have been separated as subspecies *gilgitica* Tytler, 1926, probably unnecessarily.

Pseudochara droschica Tytler, 1926 (Fig. 57)

Range: outside Pakistan, this satyrid ranges from Turkmenistan, Iran, Uzbekistan, Tajikistan, Kirgizstan, Afghanistan, and the Pamir Kush.

Locality: Kargah.

We found *P. droschica* quite commonly, but in only one locality: the top of the Kargah Valley above Gilgit, just below the point where the narrow defile opens into a wet plain at 10,000ft. This represents the nominate race; subspecies *badacheha* Wyatt & Omoto, 1966, occurs in Badakshan Province, Afghanistan, and in Uzbekistan, and additional subspecies have been described from other regions of Afghanistan, and from the Tajik Pamir (Tshikolovets, 1997).
and Col. John Scully, who took over Biddulph's post when the latter was on furlough published an independent ornithological paper (Scully, 1881). Both accounts were very extensive, but until now it has not been known that Biddulph collected a single butterfly. Perhaps "Scully butterfly specimens" lurk in the Natural History Museum collections, in London.

Charaza heydenreichi shandura (Marshall, 1882) (Fig. 60)
Hipparchia shandura Marshall, G.F.L. J. Asiatic Soc. Bengal Pt.II, 51:38, Pl.4, fig.3., 1895

Range: northern Pakistan, Tajikistan north of Wakhan.

Localities: Minapin and Fakar Peak (Nagar), Hassanabad Nallah (nr Murtazabad).

During much of our survey we obtained only two specimens of C. heydenreichi, one at 10,000ft, in July 1999 at Minapin, and the second collected by GN at Hassanabad Nallah, at 8500ft in September 2002. However, it was common on Fakar Peak in July 2003, at the much higher altitude of 13,000ft, when most specimens were fresh. Subspecies shandura differs little from nominate heydenreichi but is very distinct from the Afghan subspecies kullmanni Wyatt and Omoto, 1966, in which the pale markings are much extended — a taxon that Tuzov et al. Synomize with subspecies nana Rühl from the western Pamir and Alai.
Hyponephele hilaris (Staudinger, 1886)

Range: this species occurs in the Tien Shan, Pamir-Alai, the Hindu Kush, through the Southern Republics east of Turkmenistan, in Afghanistan and in western China. The nominate subspecies, H. hilaris hilaris, is widely distributed in the Pamir and eastern Hindu Kush, and into northern Pakistan.

We recorded H. hilaris hilaris (sometimes cited as Hyponephele pulchella C. Felder, 1857) outside the Hunza region at least as far south as Kohistan. It occurred in numerous sites along the main Hunza Valley and in several side valleys, but not beyond Sost. Its highest elevation recorded during our survey was at 14,000ft on the Deosai Plateau. Roberts notes that Evans found it the commonest butterfly around Shandur Lake, and mentions another specimen evidently collected by the First British Political Agent in Gilgit: "coll. J. Biddulph Astor, Gilgit, 7700ft in September."

Hyponephele hilaris bori (Herz, 1900) (Fig. 61)

Range: eastern Tajikistan; extreme northern Pakistan.
Localities: Mintaka, Kilik and Irshad Uwin passes.

We did not record this race from the Khunjerab region, but it was present below the summit of the Mintaka, Kilik and Irshad Uwin passes, at c.14,000ft, and across the border in Wakhan, Afghanistan.

Hyponephele carbonelli (Lukhtanov, 1995) (Fig. 62)
Hyponephele carbonelli Lukhtanov, V.A., Atalanta (Wurzburg) 26:197-200, Fig. 6a.

Range: Tarishing, Baltistan; Hoper, Hunza.
Localities: Hoper.

During our survey, this distinctive species was found only on steep slopes above the village of Hoper, in Nagar, Hunza. The placing of dark androconial scales at the base of the male FW (Fig. 62) is unique among members of the genus (Lukhtanov, 1995). The locality of H. carbonelli was generally impoverished; it is isolated locality of H. carbonelli (Lukhtanov, 1995) (Fig. 62)

The altitude where H. carbonelli was found, c.10,500ft, is midway between the reported limits of the type material from Baltistan.

Hyponephele pulchra (C. & R. Felder, 1867)
Epinephele Pulchra Felder, C. and Felder, R., Reise Novara Lep., 491.

Range: a widely distributed species. Outside the Karakoram, it is known from the Pamir, Tajikistan, Hindu Kush, Afghanistan, Kashmir and northern India.

Hyponephele pulchra baroghila (Tytler, 1926) (Fig. 63)

Range: this subspecies was described from the "... north-east corner of Chitralt and the watershed between Chitralt and Wakhan, Afghanistan and the adjoining country of the extreme northwest of Yasin in Gilgit at elevations over 9000'". The type locality of baroghila is close to Hunza; Yasin is the next-but-one valley to the West and the Baroghil Pass to Afghanistan lies about 25 direct-line miles west of the Irshad Uwin Pass and 65 miles from KKH. Early Hunza records: Evans (1927): as Erebia mani.

Verhulst (1999) recorded this satyrid from Hoper. We did not encounter it.

Paralasa mani (de Nicéville, 1880) (Fig. 66)

Range: this species is distributed from Asia Minor to Siberia, in Afghanistan, uncertainly in the Pamir (Tshikolovets, 1997). The nominate race occurs in Pakistan; several subspecies have been described, including roxane Grum-Grshimailo from the Trans-Alai and summa, Avinoff from Uzbekistan.

We found P. mani in several localities: the Kargal Valley, mountainside pasture at Chaprot (Nagar), the Muchuwar Valley, mountainside pasture at Thakot/Tharbai above Sost, and on the approach to the Irshad Uwin Pass. The last locality marked the highest elevation (13,500ft) of our records, while the lowest was 8500ft at Kargah. For Pakistan, Roberts (2001) cited it as rare, at Shandur and in the extreme northwest of the country, localities distant from Hunza.
Paralasa mani. (Evans, 1923) (Fig. 67)

Range: Pamir, Alai, Hindu Kush, Karakoram, Afghanistan, Tajikistan, possibly northern India.
Localities: Mintaka, Kilik, Irshad Uwin and Dilsun passes.

Described from Chitrals, this species occupies a higher altitudinal zone in the Hunza region than the closely related Paralasa mani. It was recorded from each of the high passes in the survey; the highest altitude was 16,500 ft below the Dilsun Pass, and the lowest records were made at c. 14,000 ft. It was thus never sympatric with P. mani.

Satyrus pimpla C. Felder, [1867] (Fig. 65)
Satyrus Pimpla Felder C., Reise der österreich. Fregatta Novara um die Erde in den Jahren 1857, 1858, 1859. 2:494, pi. 69, figs 10, 11.

Range: a locally distributed species, other than in Pakistan known from Badakshan, the western Pamir, Hindu Kush, Afghanistan, Tajikistan and northern India.
Localities: Fakar Peak (Nagar), Muchuwar.

We found S. pimpla, in small numbers, in the mountain pasture of the Muchuwar Valley, where the altitude of c.13,000 ft was slightly higher than for the Tajik race, and considerably higher than previous records from Pakistan. It was much more common on Fakar peak at the same altitude, in July 2003. Roberts (2001) records it from Baluchistan, at 7000 ft, in Chitrals from Drosh northwards, and in Astor. The nominate subspecies occurs in Pakistan and throughout most of the species' range. S. pimpla shachdara Yu. Yu. Shchetkin, 1986, was recently described, and represents the species in Badakshan and Tajikistan.

Autocera padma (Kollar, 1844) (Fig. 59)
Satyrus Padma Kollar, V. in: Hügel, F.C., Kaschmir und das Himaleyagebirge 4:445, pl. 15, figs 1, 2.

Range: this species ranges from the Karakoram, the Great Himalaya to northern Burma, and in western China (D'Abrera, 1992).
Localities: Kargah, Naltar, Chaprot, Nilt, Fakar and Minapin, Muchuwar.

We found this butterfly to be more widespread than Roberts suggested for other regions of Pakistan. He cites it as very rare in Baluchistan but common in the Murree Hills and lower Kaghan Valley, in Astor and rarely in Yasin, the second valley paralleling Hunza to the west. Our locality records include the Kargah and Naltar valleys, Chaprot, Minapin and the high pasture at Muchuwar, and at Nilt and other sites along the KKH, between 7000 ft and 10,000 ft. It was found at 13,000 ft on Fakar Peak. It was generally common in each locality, though very difficult to collect when in swift flight over steep, rocky hillsides. It was seen (GN) in large numbers at Murtazabad and Aliabad, feeding from drying apricots and mulberries, in late September and October.

Autocera brauninus (Blanchard, 1853) (Fig. 58)
Satyrus Brauninus Blanchard, C.E., in: Jacquesmont, V., Voyage dans l'Inde, 4:22, pl. 2, fig. 4.

Range: from the Karakoram to Kashmir.
Localities: Chaprot, Minapin, Muchuwar.

This species is not mentioned by Roberts (2001). We encountered it rarely during our survey, and in only three localities: a mountainside at Chaprot (Nagar), Minapin, a locality in Nagar en route to the Diran Base Camp, and in the remote Muchuwar Valley. All records lay within the narrow altitudinal range of 9000 ft to 10,000 ft. As the last species, this is a powerfully flying butterfly.

Autocera swahe (Kollar, 1844)
Satyrus swahe Kollar, V. in: Hügel, F.C., Kaschmir und das Himaleyagebirge 4:444, pl. 14, figs 1, 2.

Range: Karakoram and Himalaya; Afghanistan; western China.

We found this satyrid in only two localities: in the Karakoram Valley above Gilgit, at 8500 ft, and on an exposed mountainside above the village at Hoper (Nagar), at 10,000 ft. Roberts (2001) records it from southern Gilgit on slopes at the foot of Nanga Parbat, in Chitrals, and commonly in Hazara and the Murree Hills. He suggests that this species flies at slightly lower altitudes than A. padma, but we found it too infrequently to comment on this.

Eumenis paraisatis (Kollar, 1849)

Range: distributed from Iran to Kashmir, this species barely enters Central Asia. It is widely distributed from Baluchistan through the Northern Areas of Pakistan to Balistan.
Localities: Naltar, Chaprot, Nilt, KKH.

We found E. parisatis more commonly than Autocera padma, but occurring in fewer localities. It was particularly frequent along the jeep track leading from Nomal to Naltar, at Nilt (Gilgit) along the KKH, and outside Hunza at low altitude (5000 ft) on the road to Skardu soon after it leaves the Karakoram Highway, 16 miles south of Gilgit. The highest altitude noted was 10,000 ft at Chaprot and Muchuwar. The flight of this species is as swift and powerful as that of A. padma, behavior seldom encountered in Palaearctic satyrids.

Karanasa leechi (Grum-Grshimailo, 1890) (Fig. 68a, b)
Satyrus Leechi Grum-Grshimailo, G. 1890. In: Romanov, N.M. Mémoires sur les Lépidoptères, 4:473-5, pl. 25, figs 3a, b.

Range: this species occurs in the Pamir, Eastern Hindu Kush, Tajikistan, Kirgizstan and western China, in addition to Pakistan.
Localities: Chachpingal, Khenjerab Plateau.

This butterfly was not recorded for Pakistan by Roberts (2001) but is an established member of the high altitude Hunza fauna. It was rarely recorded in the Chachpingal Valley below the Khenjerab Plateau, at 13,500 ft, but on the plain above, from 15,500 ft to higher mountain slopes at 16,000 ft, it is the only satyrid, and at times not uncommon. It was not found on the Deosai Plateau, or at higher elevation on the mountains arising from the plateau, to 15,000 ft, which yielded Parnassius simo accona and Parnassius delphius jacobsoni. It was also collected, at 15,000 ft, on the Afghan side of the Irshad Uwin Pass in July 2001 (see Afghan Records below). Surprisingly, it was not cited from Afghanistan by Sakai (1981). It is replaced on the high passes to the west of Khenjerab — Mintaka, Kilik, Irshad Uwin and Dilsun, by Karanasa bolorica Grum-Grshimailo, 1888.

The type locality is "meridionales des monts Kounjout" (Beik), as for Polyommatus hunza, a locality in extreme western China adjacent to the short Sino-Afghan border of the Wakhan corridor. The nominate race occupies the widest range, including the Hunza localities. The type locality of a second subspecies K. leechi mihmana Arinoff & Sweadner, 1951 is the Mihman Pass, west of Beik (or Bayik), at 18,000 ft. The same authors also described K. leechi hunza from a single "Misgah Hunza" specimen; this was presumably collected in the Khenjerab region and was presumably typical K. leechi.
Karanasa bolorica (Grum-Grshimailo, 1888) (Fig. 69a, b)

Range: a widely distributed species, from the Pamir, Hindu Kush, Afghanistan, Tajikistan, the Karakoram, western China and possibly northern India.

The nominate subspecies occurs along the high passes between Pakistan and China west of Khunjerab, and on the Irshad Uwin and Dilsun passes to the Wakhan Pamir (Afghanistan), into Tajikistan and extreme western China (Xinjiang). A second subspecies, *K. bolorica chitraltica* Tytler, 1926, occurs in the high country above Chitralt, across the Wakhan and into Tajikistan, west of the range of *K. bolorica bolorica*. Within Pakistan, this *Karanasa* does not seem to be sympatric with the related *K. leechi* though both occupy the same high altitudinal zone. The ranges of *K. leechi* and *K. bolorica* overlap extensively across the Wakhan corridor into Tajikistan, but only the latter was recorded from the region of extreme eastern Afghanistan across the Irshad Uwin Pass in July 2001. The only other *Karanasa* recorded in the Wakhan at that time was *K. alpherakyi* Avinoff, 1910, a species that we never encountered in Pakistan (see Afghan Records below).

Karanasa moorei Evans, 1912

Range: other than in Pakistan, this satyrid is known from Badakshan, the Pamir and Hindu Kush, Tajikistan, Afghanistan and northern India.

Localities: Muchuwar.

We have added Hunza to its known distribution in Pakistan, but only from the high pasture on slopes of the Muchuwar Valley, at 13,000ft, in July. Tshikolovets (1997) records it from the Pamir on steppe vegetation at elevations of over 14,000ft. A second subspecies *K. moorei dubia* Avinoff & Sweatneader, 1951, was found only at the type locality of the Baroghil Pass, between present Pakistan and Afghanistan. Listed by Roberts (2001) as known in Pakistan only from Chitralt and the Yasin and Ghizer valleys of Gilgit, west of Hunza, from 9000ft to 14,000ft.

Avinoff and Sweatneader (1951) note that *Karanasa moorei* "was first described from specimens mistakenly identified as *leechi* Moore by Evans"

Karanasa modesta Moore, 1892 (Fig. 70a, b)

Range: Deosai, Lahul, Bara Lacha Pass.

Localities: Deosai Plateau.

We did not record this species from any Hunza localities, but it was quite common on the type locality of the Deosai Plateau of Baltistan, at 13,500-14,000ft. It contributes to the c.31% disparity between the faunas of Deosai and Hunza (see below). Avinoff and Sweatneader (1951) discuss the taxonomy of Deosai *Karanasa*, which evidently include two distinct morphs, but our specimens all match their figures of *modesta*.

NYMPHALIDAE

Melitaea didyma [Esper, (1779)]

Papilla Didyma Esper, E., Die Europäischen Schmet., 1: pl. 41, fig. 3.

Range: very widely distributed, through most of Europe, North Africa and across temperate Asia.

Melitaea didyma nadezhdae Sheljuzhko 1912 (Fig. 72)

Range: widely distributed in Tajikistan and the Hindu Kush, also in the Pamir outlier of Muztagh Ata in Sinkiang (Xinjiang), western China.

Newly recorded from Pakistan, this insect was found in small numbers on the Khunjerab Plateau at 15,500ft, and more frequently on vegetated mountain slopes above the plain to 16,000ft, flying with the much commoner *Boloria sipora*. It also occurred sparsely on the high passes to China and Afghanistan, and was recorded in July 2001 in the Wakhan Pamir, at c.14,000ft.

Melitaea fergana Staudinger, 1882 (Fig. 73a, b, c)

Range: this very widely distributed species, within a group of seven closely related species (D'Abrera, 1992), is known from the Tien Shan, Pamir, Badakshan, Afghan Hindu Kush, Kazakhstan, Kirgizstan, Tajikistan, China and India, in addition to localities in Pakistan (Tuzov, 1997).

In the nominate race that occurs in and near Hunza. It was found on the approaches to the Mintaka and Kilik passes, also to the Irshad Uwin Pass, never above 15,000ft. Other Pakistan localities noted by Roberts (2001) are the Kaghan Valley and Astor, south of Hunza, and Roberts erroneously gives Misgar as a collection site. It has not been found on the Khunjerab Plateau, but occurs along the KKH just below, and in the Chapchingal Valley, sites at from 13,000ft to 15,000ft. Another subspecies, *M. fergana maracandica* Staudinger, 1882 (Fig. 74a-c), was recorded from Wakhan, Afghanistan, just across the border at the Irshad Uwin Pass (see below under Afghan Records). Another race, M. fergana jacobsensi Higgins, 1941 is known from mountain ranges in Tajikistan (Tshikolovets, 1997) and Afghanistan (Sakai, 1981).

Clossiana jerdoni Lang, 1868 (Fig. 78)

Argynnis Jerdoni Lang, A., Ent. Mon. Mag., 5:34.

Range: a species with a restricted distribution: the Karakoram, northern India and Afghanistan. Subspecies *chitraltensis* Moore, 1900 was described from Chitralt District, near the Baroghil Pass on the Afghan border. The type locality of the nominate race is 'Goolmurg' (Gulmarg) in Baltistan, west of Srinagar; this race occurs in the Hunza region.

Localities: Chaprot, Muchuwar.

During our survey *C. jerdoni* was found in small numbers in two localities: a vegetated but uncultivated mountainside at Chaprot, Nagar, and in the high pasture of the remote Muchuwar Valley, both sites at c.13,000ft.

Clossiana franciscana Verhulst, 1999

Range: Kirghizstan, northern Pakistan.

Locality: Khunjerab Plateau.

This recently described species, closely related to *C. hegemone*, was recorded by Verhulst (1999) in the Khunjerab region, apparently on the plateau.
Boloria sipora (Moore, [1875])

Range: Boloria sipora was described from Kashmir and ranges from the Pamir-Alai to the Tien Shan, Hindu Kush, Kun Lun, Himalaya, and the four southern ex-Soviet Republics.

Tshikolovets (1997) regards B. sipora as constituting a species group associated with several very closely related taxa. Subspecies baralacha Moore, 1882 is synonymous with subspecies hunzaica Tytler, 1940, the race occurring in our area.

Boloria sipora hunzaica (Tytler, 1940) (Fig. 79a-f)

Range: outside Pakistan, this butterfly is known from several Pamir ranges, primarily in eastern Tajikistan.

This is yet another instance of the mythical type-locality of "Mizghah, Hunza". The specimens sent to London from the Post and Telegraph Office at Misgar could have been collected at Khunjerab or one of the passes to China or Afghanistan — Mintaka,
Kilik or Irshad Uwin but this important information never reached the Natural History Museum. It was common at 15,000ft on Fakar Peak, and was by far the most common ‘Fritillary’ on and above the Khunjerab Plateau (Fig. 79a, b), flying with the much scarcer Melitaea didyma. It was also recorded, always in small numbers, from the other high passes visited. Several specimens of an aberration (Fig. 79c-f) were obtained on three annual visits to the plateau.

Boloria sipora nitida Warren, 1944 (Fig. 80)

Range: Baltistan: Deosai.

Localities: Deosai Plateau.

Closely related to *B. sipora hunzaica*, this race differs consistently from that occurring at Khunjerab and elsewhere in the Hunza area. Typical specimens of the two are shown in Fig. 79-80. This subspecies was described from Deosai, and separated from typical *sipora* on color detail of the underside HW. We did not find this character compelling, but two characters clearly separate *sipora hunzaica* from *sipora nitida*: (i) the upperside black markings in both sexes (particularly in males) are much smaller in *sipora nitida* than in *sipora hunzaica* (i) the underside HW submarginal row of dark spots conspicuous in *sipora nitida* are very reduced or absent in *sipora hunzaica*.

Clossiana hegemone (Staudinger, 1881).

Argynnis hegemone Staudinger, O., Syst. ent. Zeit. 42:292.

Range: this species has a very wide range, including the Tien Shan, Pamir-Alai, Hind Kush, Karakoram, Ladak, the former southern Soviet Republics east of Turkmenistan, Afghanistan, northern India and western China.

Localities: Khunjerab, Irshad Uwin Pass. Early Hunza record: Evans (1927): as *Argynnis hegemone*.

This fritillary has rarely been recorded from Pakistan. We encountered it only twice in our survey: one specimen on the Khunjerab Plateau and another at the Irshad Uwin Pass, both records at just over 15,000ft. Another singleton was collected at a similar altitude in Khanjan, Afghanistan, in July 2001. Tshikolovets (1997) mentions another race, *chotana* Bang Haas 1915, from the Kun Lun and E. Pamir: however, Tuzov et al. (2000) question the attribution of this taxon to hegemone.

Argynnis aglaja (Linnaeus, 1758).

Range: this fritillary ranges through Europe (including Britain), to North Africa and Palaearctic Asia excluding tundra and desert areas, and many races have been named across this wide range (Tuzov et al. 2000).

Argynnis aglaja vitatha Moore, [1875] (Fig. 81a, b)

Range: southern Pamir, Afghanistan, Karakoram.

Localities: Kargah, Muchuwar, Upper Hunza (KKH), Mintaka Pass, Kilik Pass. Early Hunza record: Evans (1927): as *Argynnis aglaja vitatha* [sic].

The small subspecies *A. a. vitatha* (probably synonymous with *canneleata* Peschke, 1934), occurs in the Hunza area. The upperside black markings, in both sexes, are much smaller than in the nominate race of Europe. During our survey, *A. aglaja* was far less common than the next species, and the two were sympatric only in the Muchuwar Valley. Otherwise, *A. aglaja* was found in very occasionally in the Kargah Valley above Gilgit, along the KKH in Upper Hunza (Gojal) near Gulmit and on the approaches to the Mintaka and Kilik passes. The elevation of these sites ranged from 9000ft to 13,000ft. In the Wakhan corridor, Afghanistan, this species was common in July 2001, but the next was not recorded there.

Argynnis adippe ([Denis and Schiffermüller], 1775) (Fig. 82a, b)

P.[apilio] Adippa L. [Denis, J.N.C.M. and Schiffermüller, L.], Ankund. eines system. Werkes Schmetterl. Wienergegend. 177, pl. 24, figs 14-18, pl. 25, figs 1-6, pl. 26, figs 1-6.

Range: a very widely distributed butterfly across the entire Palaearctic except the extreme north, and the southern deserts.

Localities: Naltar, Hoper, Muchuwar, Deosai Plateau.

We found this species quite commonly in several localities: the Naltar Valley above Gilgit, and in the Muchuwar and Hoper valleys. We did not encounter it in the very arid environs of Skardu, but it was common on the Deosai Plateau above the town. Its altitudinal limits were marginally greater than for the last species: 10,000ft to 14,000ft. Many subspecies have been named across the very wide range; Tuzov et al. (2000) list twelve, excluding races from China and Japan. They note the great variability of *A. adippe*, and suggest that geographical variation is generally clinal. The race in the Hunza region is perhaps best attached to the race *jainadeva* Moore, 1855. Roberts recorded the species from northern Chitral and from the foot of Nanga Parbat.

Polygonia interposita (Staudinger, 1881) (Fig. 86a, b)

Range: distributed widely in the Pamir, Alai, Altai, Tien-Shan, Karakoram and Himalaya.

We found this species, always in small numbers, in three Hunza localities: at Chaprot (Nagar), Minapin (Nagar), and on the lower approaches to Mintaka Pass, in each instance at c.10,000-11,000ft. It was most frequent on the open hillsides/bin woodland of Minapin, en route to the base camp of Diran. It was also recorded, rarely, on the jeep track to Deosai, above Skardu at about the same elevation. Roberts (2001) cites localities for this species (as *Polygonia egea* Cramer, 1775) as juniper forests of Baluchistan, from drier regions of Chitral and rarely in the Murree Hills; localities ranging downwards to 8000ft. The nominate race occurs in Pakistan; subspecies *undina* Grum Gurshimalo, 1890 occurs in the Pamir-Alai and much of the Tien Shan. All populations of *P. interposita* show seasonal variation, the later brood being much paler than the first.

Aglais urticae (Linnaeus, 1758)

Range: throughout Europe and much of temperate Asia to the Pacific Ocean. Is rare in Pakistan (Roberts, 2000); known from northern Chitral, Gilgit and Baltistan.

Localities: Gilgit.

We found this very widespread species once only, at 5000ft in the town of Gilgit, while Roberts (2001) recorded it also from Chitral and Baltistan, above 8000ft. In our survey, it was thus never sympatric with its two relatives listed below. The nominate
subspecies occurs in Pakistan; other taxa have been described for populations in the far North, the Caucusas, the Baikal region and western China (Tuzov et al. 2000). It is likely that some Pakistan records of this species are misidentifications of the very similar A. rizana Moore, 1872.

Aglais caschmirensis (Kollar, 1849) (Fig. 83)
Vanessa caschmirensis Kollar, V. In: Hugel, C.F. Kachsmir und das Himaleyagebirge 4:442, pl. 11, figs 3, 4.

Range: widely distributed in Central Asia, including Uzbekistan, Tajikistan, Afghanistan, the Himalaya and western China. Localities: Kargah, Naltar, Chaprot, Minapin, Muchuwar, KKH, below Mintaka and Kilik passes; Deosai Plateau.

During our visits, this species was most abundant in the Naltar Valley, north of Gilgit in July and August. We never found A. caschmirensis below 8000ft; it occurred in the side valleys of Kargah, Naltar, Minapin, Muchuwar and on mountain slopes at Chaprot (Nagar) at 8000-11,000ft. It was recorded along the KKH below Mintaka and Kilik passes; Deosai Plateau. Roberts (2001) notes it as absent from Baluchistan, but common from Chitral eastwards. We agree with his estimate that this is the most common nymphalid in the Northern Areas.

Aglais ladakensis (Moore, 1878)

Range: a close relative of the last, with as wide a distribution that includes the Kun Lun, Kirgizstan, Nepal, Tibet and Xinjiang (western China). Tshikolovets (1997) questioned its occurrence in Pakistan, and Roberts (2000) does not mention it.

Localities: Muchuwar.

We recorded this species from a few specimens collected in the remote Muchuwar Valley, where it was sympatric with A. caschmirensis, at 11,000ft. D’Abera (1992) illustrates a BMNH specimen from “Karakoram” at 18,000ft.

Vanessa cardui (Linnaeus, 1758)

Range: virtually cosmopolitan, though rare in South America and present only in isolated high inter-Andean valleys, and in Venezuela (Smith et al., 1994).

This is one of the earliest Hunza butterflies to be seen and one of the last on the wing. GN has observed it in February and in November. We recorded it, often commonly, at all sites visited along the Hunza Valley from Gilgit, at 5000ft, to above the Kunjerab Plateau at 16,000ft, and in each side valley. However, it was not found at the Mintaka and Kilik passes, or on the Ishkad Uwin Pass, all at an altitude similar to Kunjerab, although we attribute this absence to chance rather than to an ecological restriction. Tshikolovets (1997) notes that it "flies across glaciers and snowland over the whole Pamir territory", and the same is undoubtedly true in other regions of Europe and Central Asia. Roberts (2001) suggests that it may migrate to the North in Spring; occurring in the plains during Winter, and from April to November in the Northern Areas.

LYCAENIDAE

Lampides boeticus (Linnaeus, 1767)

Range: almost cosmopolitan, absent only from the Americas; very
widely distributed from southern Europe and an occasional vagrant as far north as Britain; the Atlantic Islands and Africa, the Middle East, the Indian Subcontinent and elsewhere in southern Asia, and a large area of Australia. A recent record from Martinique (Vincens, 2001) is the first for the New World. It occurs in Afghanistan (Sakai, 1891); it is not listed for the Pamir (Tshikolovets, 1997) but for Uzbekistan, Tshikolovets (2000) records it as "everywhere except high mountains and sandy deserts."

Localities: Kargah; Murtazabad, Aliabad.

"...for Uzbekistan, Tshikolovets (2000) records it as widespread in mountain meadows of the Alai Mountains, the Uzbek Turkistan, and the Tien Shan.

Pseudozizeeria maha (Kollar, 1844) (Fig. 117a, b)

Range: an Oriental species, ranging to southern India and China.

Localities: Gilgit, Kargah, Nomal, Joglot, lower Hunza Valley.

This "grass blue" flew with Zizeeria karsandra on cultivated grasses in Gilgit, at the foot of the Kargah Valley near the spectacular cliff-side Buddha where it flew with the next species, in the lower approaches to the Naltar Valley, and in heavily irrigated settlements along the KKH, notably at Joglot (Gilgit). In these localities, its altitudinal limit was about 6000ft. It flies very weakly, and is especially common early in the morning and before sundown, not flying in the heat of the day.

Celastrina kollari (Westwood, 1852)

Range: northeast Afghanistan, from Chitral eastwards to Kumaon.

Localities: Kargah.

This lycaenid and the next are regarded by Eliot and Kawazoé (1983) as subspecies of Celastrina argiolus. C. kollari was collected on several occasions in the Kargah Valley above Gilgit, beside water channels from the valley entrance (5000ft) to the central region at about 7000ft, in July and August. It was always scarce, recorded from single specimens.

Celastrina huegelli (Moore, 1882)

Range: Eliot and Kawazoé (1983) list the nominate subspecies as extending from the Karakorom and the Himalaya to Naini Tal, and C. huegelli oreoides Evans, 1925 in the eastern Himalaya and Nepal.

Localities: Naltar, Murtazabad, Sost.

This species was recorded from the Naltar Valley, in very wet pasture at 7500ft. It was found occasionally in Murtazabad (Middle Hunza) at the same altitude, and on grassy open land at Sost, the last village in Hunza, at 10,000ft.

Pseudophilotes vicrama cashmirensis (Moore, 1874) (Fig. 91a,b)

Range: this species ranges from southern Central and Eastern Europe to temperate and subtropical areas of Eastern and Central Asia.

Localities: Kargah, Naltar, Choptor, Gulmit-Nagar, Hoper.

The nominate subspecies is present through the western part of the range. The eastern subspecies, P. vicrama cashmirensis Moore, 1874 was described from "N.E. Cashmere"; it is very local in the Tajik Pamir (Tshikolovets, 1997) and is the race present in Pakistan. In our experience, this distinctive lycaenid was scarce to occasionally common in several Hunza localities, but only between 7000ft and 9000ft, considerably lower than Roberts' data and the Pamir altitudinal range of 11,500-12,500ft. It occurred sparingly in the Kargah Valley above Gilgit, in the Naltar Valley, on the mountainside at Choptor, and more commonly near Gulmit-Nagar in lower Hunza and on mountain slopes above Hoper. Most localities were vegetated: the Gulmit-Nagar site was an arid slope with little vegetation other than occasional plants of Perovskia abrotanoides. A third subspecies, P. vicrama astabene Hemming, 1932 is described as "ubiquitous, except in high mountains and sandy deserts" in Uzbekistan (Tshikolovets, 2000). Roberts (2001) regarded it as a...very high elevation species, and very widespread in the dryer northern Himalayan regions" at 6000ft to 14,000ft, from Chitral, Pundial (Gilgit Agency), rarely in the juniper forests at Ziarat (Baluchistan) and in Baltistan.

Everes indica Evans, 1932 (Fig. 118)

Range: other than in Pakistan, the northern range of this Oriental species extends to the northwest Himalaya and Afghanistan.

Localities: Gilgit, Kargah, lower Hunza Valley.

In the Hunza area, it is common in and around Gilgit, as at the foot of the Kargah Valley at 5000ft, in grassy, flowery and well irrigated sites. There, it flies with Zizeeria karsandra and Pseudozizeeria maha. Along the KKH it occurs sporadically to about 7500ft near Aliabad, only in similarly wet localities, flying weakly, above vegetation, resting and nectaring often.

Capido buddhista (Alpheraky, 1881)

Range: Tshikolovets (2000) lists the nominate race, described from the district of Kulja (then Russian territory, now in Xinjiang Province, China), as distributed through each of the Southern Republics; in Uzbekistan widespread in mountain meadows of the Alai Mountains, the Uzbek Turkistan, and the Tien Shan.
Plate 10. Lycænidae: Fig. 87. Plebejus samudra, a-c) female. Fig. 88. Albulina asiatica, a, c) male, b) female. Fig. 89. Albulina omphisa, male. Fig. 90. Albulina chrysopis, a-b) male. Fig. 91. Pseudophilotes vicrama cashmirensis, a-b) male. Fig. 92. Iolana gigantea, male. Fig. 93. Chilades trochilus, a-b) female. All figures about twice life-size.

Localities: Minapin, Muchuwar.

Roberts (2001) reported it as rare in Pakistan, known only from the Shandur region of Chitral. Cupido buddhistica was indeed rarely encountered during our survey: at Minapin and in the Muchuwar Valley, from 8000ft to 12,000ft; in both localities found nectaring in grassy mountain slopes.

Iolana gigantea (Grum-Grshimailo, 1885) (Fig. 92)

Range: Tshikolovets (2000) gives the distribution of the nominate race as Kirgizstan, Tajikistan, Afghanistan and Pakistan.

Localities: approach to Minapin.

We recorded it only twice, in July 1995 and 1998, in arid terrain at 8000ft on the track to Minapin, on the Nagar side of the Hunza Valley. Roberts (2001) reports this species for Pakistan only from extreme northern Chitral and Gilgit District, but without locality data, and Tshikolovets (2000) provides numerous records for Uzbekistan, from dry rocky slopes and scree, at the relatively low altitude of 3300ft to 6600ft. Subspecies I. gigantea gilgitica Tytler, 1926 was described from the Yasin Valley, to the west of Hunza. This taxon differs little from nominate I. gigantea, and is of doubtful value.

Chilades trochilus (Freyer, [1845]) (Fig. 93a, b)

Range: this lycaenid is distributed from Greece, Turkey, North Africa, through subtropical and tropical Asia. It is not mentioned from the Pamir (Tshikolovets, 1997) but is widely distributed in Uzbekistan "except in high mountains and sandy deserts" (Tshikolovets, 2000).

Localities: Naltar.

Chilades trochilus is surely in the running to qualify as the World's smallest butterfly. We found it once in Kohistan, at 2500ft, along the KKH en route for Gilgit, flying feebly around ferns in the spray of a roadside glacial run-off. We did not record it from Hunza, but a single specimen was collected in Naltar Valley, at 9000ft. Roberts (2001) cited it as widespread in Pakistan; in Sind, mainly near the coast and always in grassland, occasionally seen in North West Frontier Province including the Khyber Pass; in Baluchistan, a few localities in Punjab and one in Chitral.

Plebejus samudra (Moore, 1874) (Fig. 87a, b, c)

Range: Pamir, Karakoram, northern India, Xinjiang (western China).

Localities: many sites from above Gilgit to Sost, Misgar, Chipursan.

In the Hunza area, the distribution of this butterfly parallels precisely that of the labiate plant Perovskia abrotanoides. We found neither below Gilgit at 5000ft, then as the KKH ascends, the plant becomes more common, as does the lycaenid. This butterfly was the most consistently present in localities along the KKH from just beyond Gilgit (5000ft) to Sost (10,000ft): it occurred in the Kargah and Naltar valleys, Chaprot (Nagar), Minapin, Muchuwar Valley, Hoper, and at many sites along the KKH. On the dry hillsides from Gulmit to the area below the terminal moraine of the Pasu glacier in Gojal (Upper Hunza), Perovskia is the dominant plant, and P. samudra abounds, nectaring on the flowers. Oviposition was not
Agriades joloka (Moore, 1875) (Fig. 94a-f)

Range: from Baltistan to eastern Kashmir.

Localities: [Upper Hunza Valley].

We did not find this small lycaenid in the Hunza area; within Pakistan, its center of abundance is the Deosai Plateau, at 13,500ft to 14,000ft, where on each of our visits it was the most common butterfly. It was totally and strikingly limited to the plateau and not seen even a short distance along the downward track, though other plateau species including Lycæna karsyapa and Lycæna aditya extended some distance further down. Roberts (2001) regarded it as a high altitude species, from 12,000ft to nearly 17,000ft on Chogo Lungma, in the Rupal Valley, Astor, and rarely in Chitral.

Agriades pheretrides (Eversmann, 1843)

Localities: [Upper Hunza Valley].

This species is widely distributed at high altitude regions of Central Asian mountains, including scattered colonies that have been described as geographical races, some regarded as semispecies of the pheretrides superspecies concept (cf. Tshikolovets, 1997). Bâlînt and Johnson placed this species in the pyrenaicus-group of Agriades. The group requires a taxonomic revision.

We did not find this species during our survey, but in July/August 1999 we were shown specimens collected illegally in Khunjerab National Park by two French nationals. We were not told the collecting locality, but this was probably below the level of the Chapchingal Valley, at 13,200ft. We have no information on the disposition of these specimens. It was also recorded by Verhulst (1999), but again no precise locality data were given other than “Khunjerab Pass”. Another butterfly recorded with the same qualification is the riodinid Polyæna tamerlanæ (see below). Roberts (2001) lists P. pheretrides as rare in Chital but more common in Swat and Kohistan, also in Chillas and Astor.

Albulina asiatica (Elwes, 1882) (Fig. 88a-c)

Range: Karakoram, Himalaya and other high mountains of Central Asia.
Plate 11. Lycaenidae: Fig. 94. Agriades jaloka, a-c) male, d-f), female. Fig. 95. Aricia astorica, male. Fig. 96. Polyommatus icarus, male. Fig. 97. Polyommatus icadius, male. Fig. 98. Polyommatus ariana, a-g) male, h) female (a, Hoper; b, Deosai; c, Ladakh 12,000ft (BMNH coll.); d, Ladakh 7500ft (BMNH coll.); e-f, Goorais Valley (BMNH coll.); g-h Hunza Valley. Fig. 99. Polyommatus stoliczkan, a-b) female. Fig. 100. Polyommatus erigone, male. Fig. 101. Plebejus bellona, a-b) male. Fig. 102. Polyommatus hunza, a-b) female. Fig. 103. Polyommatus pulchella, a-b) male. Fig. 104. Aricia agestis, female. Fig. 105. Aricia eumedon, a-b) male. All figures about twice life-size.
Albulina chrysopis (Grum-Grshimailo, 1888) (Fig. 90a, b)

Range: this species is widely distributed from the Karakoram, the Hindu Kush, Tajik Pamir, the Kun Lun, Ladakh, northern India and western China.

This species was described from 'Beik' in extreme western Sinkiang (Xinjiang), near the boundary between Wakhan (Afghanistan) and China. A population from Gilgit was named giglitica by Tytler (1926) and Afghan specimens were misidentified as "Albulina metallica chitraensis Tytler" by Sakai (1981). The type material of Tytler's giglitica was examined and the taxon was synonymized with chrysopis (Báltin, 1999; Tshikolovets, 1997). The taxon chitraensis Tytler, 1926 represents a distinct species (Báltin, in preparation).

Albulina chrysopis is newly recorded from the Hunza region, where it is a distinctly high altitude butterfly. Our lowest altitude records were from upper Naltar, near Naltar Lakes, at 10,000ft. Beyond Sost it occurred near glacial water run-offs with ferns and flowering vegetation at 11,000ft, and it was recorded from the approach to Ishad Uwin Pass on the Wakhan (Afghanistan) border at 15,000ft. It occurred commonly at the same altitude below Dilsun Pass on the eastern border of the Wakhan (Afghanistan)-Pakistan border. It was also found on the Deosai Plateau, Baltistan, at 13,500-14,000ft. Roberts (2001) mentions previous records from upper Chitral: Baroghil Pass and Shandur. Most populations, including those in Pakistan, represent the nominate race; subspecies artenita Frühstorfer, 1916, was described from Pamir.

Albulina omphisa (Moore, 1874) (Fig. 89)

Range: the distribution of this species centers on the southern Hindu Kush and the Karakoram.

Localities: Naltar, Chaprot, Minapin, Hoper.

This species was described from Ladakh. The male represents an unusual upperside phenotype with a very wide black border and basal purple-blue suffusion; in A. chrysopis the male upperside is uniformly duller blue. In both species the female is generally brown above. A sibling species has very recently been discovered in Afghan Records (Balint, 1999). This insect was found in a few Hunza localities, always sparsely. It occurred in the Kargah and Naltar valleys in flowery pasture to 9000ft, and on a grass-covered mountainside above Hoper (Nagar) at a similar elevation. The distinct Pamirian P. (artaxerxes) transaltae Obratsov, 1935, a member of the artaxerxes complex, was found in the Wakhan (Afghanistan) in July 2001 (see Afghan Records below).

Aricia eumedon (Esper, [1780]) (Fig. 105a-c, 106)

Range: across much of Europe and temperate Asia, from Atlantic to Pacific.

Aricia eumedon sarykola (Sheljuzko, 1914) (Fig. 105a, b, 106)

Range: Pamir; eastern Hindu Kush; Afghanistan; northern Pakistan; western China.

Localities: [Wakhan], Kargah, Minapin, Hoper.

Aricia eumedon occurs throughout much of the Old World and at lower altitudes in Europe forms two distinct ecotypes: a widely distributed hygrophilous form inhabiting biotopes with high vegetation along watercourses and a xeromontane form inhabiting low steppe biotopes. An example of the latter is the poorly known and endangered subspecies A. e. mayencis Eitschberger & Settinger, 1975. The hygrophilous ecotype is known from Siberia, Mongolia and Korea, and most probably some high altitude Asian populations belong to the second group (cf. mylitta Hemming, 1930) though this is still an open question.

Tshikolovets (1997) distinguishes A. eumedon sarykola and A. eumedon spp. indicating an easterly distribution for the former, and a westerly distribution of the latter in Pamir. He also figured these taxa, which basically represent the same eumedon phenotypes. However, in addition to A. e. sarykola which we recorded only in Wakhan, Afghanistan, we obtained a series of about 10 specimens from Hunza (Fig. 105b-e). In most of these post-discal spots are extremely reduced or absent, while the white medial streak is prominent against the dark grey underside ground coloration. This phenotype possesses characters used to signify individual forms of A. eumedon, such as privata Staudinger, speyeri Husz and vitata Oberthür. More material and associated field study is needed to clarify the true taxonomic status of this curious phenotype.

The "Hunza phenotype" was recorded from the faunistically rich Kargah Valley, at Minapin and was the second Aricia from the generally depauperate butterfly fauna of Hoper. Most records span
Aricia astorica (Evans, 1925) (Fig. 95)

Range: apparently restricted to Pakistan.
Localities: Kargah, Muchuwar.

This species was described from specimens from Astor, a valley south of Hunza, and has been placed either in the genus Polyommatinus (Bridges, 1994) or Aricia (Bálint and Johnson, 1997). In fact, both placements are erroneous (Bálint, in preparation), but since systematic investigations are beyond the scope of the present paper, we follow the current placement of this taxon.

This strikingly marked lycaenid was most regularly recorded at Kargah, above Gilgit, on each of four visits to the valley. A. astorica was never common, generally flying swiftly around low bushes, and found only from 8000ft to the top of the narrow valley where the terrain opens onto a flat, wet plain at 10,000ft. The only other locality for this species during our field work was the steep mountainside of the Muchuwar Valley at 13,000ft, although Verhulst (1999) found it in the Hoper Valley. Though we did not record it from the Deosai Plateau, Roberts (2001) cites it without locality information from the vast area of "Baltistan", also from mainly southern localities in Gilgit Agency: Nanga Parbat, Astor and Rupal, but not known from Chitral. He gives an altitude range of 8000ft to 10,000ft, but sites in Baltistan may well match or exceed the elevation of the Muchuwar records.

Plebejus devanica Moore, [1875] (Fig. 108a, b)

Range: Karakoram to Ladakh.
Localities: Kargah, Naltar.

This species was described from Ladakh, and was found at low altitude in Hunza, in two valleys near Gilgit between 8000ft and
10,000ft, in open scrub/thin woodland. We are of the opinion that P. devanica is closer to P. bellona than to Plebejus sarta, Alpheraky, 1887. Our specimens are identical to the lectotype (BMNH 264584). The taxon Polyommatus sarta rupala was described from "Rupal, Astor" by Tytler (1926). The lectotype of rupala (BMNH 264591) cannot be distinguished from P. devanica and thus we consider devanica and rupala as synonyms. Accordingly, the original combination of rupala was incorrect because P. sarta is not conspecific with P. devanica.

P. devanica was placed either in Polyommatus (Tshikolovets, 1997) or Alpherakya (Zhdanko, 1994) (and see Tuzov et al., 2000). We consider P. devanica and its close relatives, the devanica-species group (sensu Bálnik and Johnson, 1997) as a species group of Plebejus from genitalic and wing pattern characters. The devanica species group is equivalent to the genus Alpherakya.

The taxon Lycaena devanica gracilis Evans, 1912 turned out to be a secondary homonym of Lycaena gracilis Miskin, 1890 and therefore Tshikolovets (1997) renamed the taxon as Polyommatus devanica evanisi. However, this new name was in turn also a secondary homonym of Polyommatus (Agrodaetus) evansi Forster, 1956, and the taxon was renamed Plebejus devanica tshikoloveti by Bálnik and Johnson (1997). However, all these nomenclatural machinations were unnecessary since, in our view, Lycaena bellona takes priority as the types of P. bellona. Devanica evanisi. However, this new name was in turn also a secondary homonym of Polyommatus (Agrodaetus) evansi Forster, 1956, and the taxon was renamed Plebejus devanica tshikoloveti by Bálnik and Johnson (1997). However, all these nomenclatural machinations were unnecessary since, in our view, Lycaena bellona takes priority as the types of P. bellona. Devanica evanisi.

This distinctively marked subspecies was described from Chital and was also recorded from the Pamir as Polyommatus sarta sartoides by Tshikolovets, 1997). However, Tuzov et al. (2000) considered sartoides as a separate species. Our specimens are identical with those illustrated from the Pamir. In the Hunza region we found this insect only in the Kargah Valleys above Gilgit, at 10,000ft, flying with Aricia astorica, and at the isolated oasis of Lup Jangal (Map 3) just before the trails to Mintaka and Kikils passes diverge near Murkushi. It was also recorded in July 2001 across the Irshad Uwin Pass in the Wakhan Pamir (see Afghan Records). Roberts (2001) lists an unidentified race of P. sarta as widespread at high elevation in Chital, including the Baroghil Pass and Shandur Plateau, from Yasin, west of Hunza and from Astor.

The specimens from Kargah seem to be identical to those obtained in 1994 during a Hungarian Museum of Natural History visit to Deosai. These are larger and darker than P. sarta elsewhere and may well prove to be subspecifically distinct.

Polyommatus icarus (Rottemburg, 1775) (Fig. 96)

Range: across the Palaeartic region.

Localities: Naltar, Hoper.

That this is one of the most widespread polyommatines in the western Palaeartic region at present is a reflection of its wide ecological tolerance. It has penetrated a great variety of habitats in Europe, but in natural or less disturbed ecosystems this species is not common, or even absent.

Several subspecies have been described, centering on certain geographical regions. One of the most striking is P. i. turanica Heyne, 1895 with a tendency toward tannish color and an almost patternless white underside. The exposure of many regions to two millennia of human influence has often broken down former isolating mechanisms, permitting gene flow. As a result, even amongst populations with turanica features, individuals have recently been found that are identical with individuals from other parts of the range of the species. However, we have retained the subspecific name P. i. chitralensis Swinhoe, 1910 described from Drosh, a locality in the foothills southwest of Hunza, although amongst the luxuriously patterned Hunza specimens are individuals identical with darker European ones. We consider P. icarus to be an extremely polymorphic species and one of the most successful survivors of the present biodiversity crisis.

This species was recorded from only two relatively low elevation localities, suggesting human influence. In the Naltar Valley it was locally frequent in July 1995 and August 1997, in areas that had escaped goat and sheep overgrazing. It was then sympatric with the more common P. ariana but was not found on subsequent visits to this valley, when grazing had severely reduced adult lycaenid numbers. It was also recorded, sparsely, at 11,000ft on hillsides...
above the Hoper Valley in Nagar again flying with *P. ariana*, and with *Plebeius bellona*. Roberts (2001) lists what is presumably this subspecies as widespread in Chitral, common in cultivated areas of the Quetta Valley (Baluchistan) and in the Murree Hills.

Polyommatus icadius (Grum-Grshimailo, 1890) (Fig. 97)

Localities: Kargah, KKH (Nil), Minapin, Muchuwar.

This species was described from a series of males and females from the Fergana region and the Pamir, and seems to be widely distributed in Central Asia. It is difficult to separate specimens from the congeneric *P. icarius* occurring syntopically, as in the past no diagnostic character was known. However, the two taxa may reliably be separated in large samples, as *P. icadius* males possess a slightly lighter dorsal structural blue color, and a white of greyish-white underside ground color with extensive blue basal suffusion. Females are difficult to separate: in *P. icadius* the wing shape is generally rounder, and the submarginal orange lunules less developed. According to Russian workers the species is oligoagrophic on the leguminous genus *Cicer* (Zhdanko, 1993; Ionin & Kosterin, 1995). We have no data on larval hostplant of sympatric *P. icarius* populations. There are some available names introduced as subspecies or geographic forms of *P. icarius* from this general region and some should probably refer to *P. icadius*. As for the latter, we consider *P. icadius* as a widely distributed, polytypic Central Asian species, and we do not apply any subspecific name.

P. icarius is a butterfly of low altitude in Hunza localities. It was found in smaller stretches of the Kargah Ravine above Gilgit, at 6000ft, and commonly at a similar altitude on the sparsely vegetated slopes bordering the KKH opposite the Khunjerab River near Nilt. It was also found, in smaller numbers, in the pastures of Minapin and Muchuwar, at c.10,000ft.

Polyommatus ariana Moore, 1865 (Fig. 98a-h)

Range: Hindu Kush, Karakoram, Himalaya.
Localities: Naltar, Minapin, Muchuwar, above Gilmit; Deosai Plateau. Early Hunza records: Evans (1927): (i) as *Polyommatus eros hunza* Grum-Grshimailo, 1890, and (ii) *Polyommatus eros janetae* Evans, 1927.

This species was described from an unstated number of male and female specimens from Kunawur (Himachal Pradesh). Moore mentioned it as abundant from 8000ft to 10,000ft. The male was described as *Upperside brilliant blue; anterior margin of hind wing black, inner margin whitish with no mention of a marginal black border on fore- and hind-wing*. The accompanying figure shows a very narrow black edging. The BMNH lectotype designated by Bâlînt (1999) possesses these traits.

In each of the Hunza localities listed above, the males bear a narrow, black fore- and hind-wing border (Fig. 98a) from 0.1-0.3mm in width (measured on the FW at the distal end of vein M3). The female is dark brown above (Fig. 98h) sometimes with basal blue flush, generally lacking in Deosai populations (Fig. 98h). At 13,500ft to 14,000ft on the Deosai Plateau of Baltistan, c.125 miles south-east of central Hunza, flies a polymatematic identical with Hunza *P. ariana* on the underside (Fig. 98g) but in which males have very conspicuous broad black fore- and hind-wing marginal bands (Fig. 98b); as measured above the average FW band width is 2.0mm.

Were only these populations to be considered, the Deosai morph would be sufficiently distinct for taxonomic separation, at least at the subspecific level. The picture, however, changes when a fuller geographical range of the butterfly is examined — here, the collections in the BMNH, London. Males similar to Deosai specimens are present from other localities in Baltistan including Dras and Karghil; the latter on the Deosai Plain near the present Line of Control between Pakistan and India. Most specimens from Ladakh have moderately wide borders (Fig. 98c) but in others (Fig. 98d) this is very narrow. Again, about half of the long series of *P. ariana* from Goorais (Kashmir) have moderately wide borders (1.2-1.6mm) while in the remainder the border is even narrower than in Hunza specimens (Fig. 98e, f). This pattern is repeated in series from Sind ("Scind Valley") southwest of Hunza and well south of the Hindu Kush/Karakoram. The few specimens labelled "Chitral" and "Gilgit" have narrow borders.

This variation rules out the Deosai population as a strictly taxonomically definable entity. The sympatric presence of both wide- and narrow bordered specimens (Sind, Goorais) negates the possibility of subspecific status for wide-bordered morphs from Deosai. We are left with the option that Deosai specimens represent a sample of an extremely polymorphic species. The question of why this morph predominates at high altitude, in Deosai and elsewhere in Baltistan and in Ladakh can perhaps best be approached via molecular genetic analysis; similarly the occurrence of a wide range of band widths in some populations (Sind, Goorais) and more consistent band widths in others (Deosai). It is, of course, possible, even likely, that *Polyommatus ariana* is not a single very variable species but a group of closely related species.

Polyommatus ariana was recorded from several side valleys of Hunza, though not along the main valley: Naltar, Minapin (Nagar), Muchuwar and above Gulmit (Hunza), all close to an altitude of 10,000ft. At higher elevations in the Hunza region, *P. ariana* is replaced by *Polyommatus erigone* and *Polyommatus stoliczkana* between 13,000ft and 14,000ft.

Polyommatus stoliczkana (Felder & Felder, 1865) (Fig. 99a, b)

Localities: Muchuwar, Chapchingal, KKH below Khunjerab.

The phenotype represented by the lectotype of *P. stoliczkana* from Ladakh (BMNH(E)264744, see Bâlînt, 1999) has a distinctive underside in which submedian intercellular spots are lacking or extremely reduced. Cell CuA1 is entirely white in the hind-wing median and submedian area. The characters contrast with the closely related taxa *P. ariana*, *P. erigone* and *P. hunza* which have more "normal" polymatematic markings. The phenomenon of reduction in ventral markings is probably correlated with a harsh, arid climate, as is known for the *P. icarus* complex, where certain *icarus*-like populations have been segregated as either species or subspecies on the basis of this trait: for example *P. kashgharesnis* Moore, 1878, *P. szabokyi* Bâlînt, 1990 or *P. turanicus* Heyne, 1895.

This is a medium-to-high altitude species in Hunza, and it was recorded in the high pastures of Muchuwar at 13,000ft, higher than either *Polyommatus ariana* or *Plebeius sarta*. It occurred more commonly in the arid Chapchingal Valley (Fig. 13) above 13,000ft on occasional vegetated patches, but at a lower altitude than the much rarer *P. erigone*, and along the edge of the KKH beyond, to 14,500ft — just below the Khunjerab Plain. It was not recorded on the sparse vegetation below the Irshad Uwin Pass, but was found in the Wakhan Pamir in July 2001 (see Afghan Records below). Roberts (2001) cites it (in error, as a subspecies of *Polyommatus eros*) from two Upper Hunza localities, Shimshal and Batura glacier.
but without collection data. Two subspecies of *P. stoliczkana* have been described from Afghanistan (Sakai, 1981).

Polyommatus erigone (Grum-Gershimalo, 1890) (Fig. 100)

Range: Tajikistan, Afghanistan, extreme northern Pakistan.

Localities: Chapchingle, Mintaka Pass, Kilik Pass.

A high altitude species; newly recorded for Pakistan, it was found rarely on mountain slopes bordering the Chapchingle Valley, higher than records of *P. stoliczkana*, and near the top of Kilik Pass, each site at 15,000ft and more commonly to 16,000ft at the Mintaka Pass in August 2002. It was not recorded at the same altitude or above on the Khunjerab Plateau, or across the border in the Wakhan Pamir.

Polyommatus hunza (Grum-Gershimalo, 1890) (Fig. 102a, b)

Lycaena Hunza Grum-Gershimalo, G., In: Romanoff, N.M., Mémoires sur les Lépidoptères, 4:397-9, pl. 15, fig. 2.

Range: Afghanistan, Tajikistan, Pakistan.

Another polyommatine newly recorded from Pakistan despite its name: the species was described from a mountain range in western China. The specimens of the original series were taken along the river Mazur. The type locality of the species was designated as "Beik" via the lectotype designation of Bâlint (1999). Actually, the species name given by Grum-Gershimalo is misleading; no entomologist had entered Hunza in 1890, and the type locality is not situated there: Beik (or Bayik) lies in Sinkiang (China) a short distance from the Sino-Afghan border at the end of the Wakhan corridor. The species belongs to a complex of small blue polyommatine lycaenids with poorly understood taxonomy. Tshikolovets (1997) records the species from the ex-Soviet part of the Pamir mountains and suggested that *P. hunza* is probably a subspecies of *P. stoliczkana*. However, the lectotype of *P. hunza* (BMNH(E) 264677 (see Bâlint, 1999) accords with the original figure given by Grum-Gershimalo and represents a phenotype distinct from *P. stoliczkana* (see entry for the latter species, above). *P. hunza* is probably phenotypically closer to the complex of the taxa *annamaria-arianera-erigone*.

In the Hunza region, we recorded this species only from the summit areas of the Mintaka and Kilik passes at c.16,000ft. Its flight is brisk, and it was seen only occasionally. Across the Irshad Uwin border in Wakhan, Afghanistan, it was more frequent in July 2001, and sympatric with *P. stoliczkana*.

Polyommatus pulchella (Bernardi, 1951) (Fig. 103a, b).

Range: Pamir; Hindu-Kush; Karakoram of extreme northern Pakistan.

Localities: Irshad Uwin Pass.

This species belongs to the subgenus *Agrodiaetus* Hübner, 1822. It is the sole representative of the clade recorded from our area, although more species have been found in adjacent regions: *P. florenciae* Tyler, 1926; *P. iphigenides* Staudinger, 1886 and *P. poseidonides* Staudinger, 1886.

This striking little species is newly recorded barely within Pakistan territory, just below and at the summit of the Irshad Uwin Pass, between 15,000ft and 16,000ft on the Afghan border above the Chipursun Valley. It was not found, in July 2001, across the border in the Afghan Pamir, but it must occur there.

Range:

This species seems to be restricted to the southern Hindu Kush, Karakoram and Kashmir, recorded neither from the Pamir nor Uzbekistan (Tshikolovets, 1997; 2000). Localities: Gilgit, Kargah, Nomal, Aliabad.

We found *H. sena* occasionally on the route towards Gilgit, in Kohistan and northwards, always near water and never leaving shrub vegetation. It occurred at Gilgit and in the Kargah Valley above, on the track from Nomal leading to the Naltar Valley, and around Aliabad, middle Hunza. In all these localities it was common, settling often on leaves and nectaring on a variety of plants. It was particularly abundant at the oasis of Joglot on the KKH north of Gilgit, a heavily irrigated site in extremely arid terrain, that also afforded records of *Eurema hecabe* and *Eogenes alcides*. The precision of the altitudinal cut-off point of this species was remarkable: above 7500ft it was not recorded in any locality, whereas it was common slightly lower. Roberts notes it as extremely common in Chitral and Swat, from March to October, and from 4000ft to 7000ft, also in the Murree Hills in late summer.

Lycaena phlaeas (Linnaeus, 1761) (Fig. 111a, b, c).

Range: this butterfly has a generous Holarctic distribution, across Europe and North Africa, and temperate and subtropical Asia and Japan, to North America.

Localities: Gilgit, Kargah, Hunza Valley, Chapchingle, approach to Mintaka, Kilik and Dilsun passes; Deosai Plateau.

Tshikolovets (2000) accepts the morph of this very variable butterfly that is ubiquitous in Uzbekistan, except in sandy deserts, as the nominate subspecies. In his work on the Pamir (Tshikolovets, 1997), he lists two subspecies: *L. phlaeas comederam* Grum-Gershimalo, 1890, a pale morph in both sexes, as representing the insect in the Pamir, including Muztagh-Ata, the massive Pamir outlier in western Sinkiang (China). The second subspecies, *L. phlaeas stygianus* Butler, 1880 is probably the race best fitting specimens from northern Pakistan. The type locality of this subspecies is "Candahar", Afghanistan. However, the distribution map in Tshikolovets (1997) is confusing: it appears to show ssp. *comederam* as extending across the eastern end of the Wakhan and including the extreme northern terrain of Pakistan, with Khunjerab and the westerly passes of Mintaka and Kilik. *L. phlaeas comederam*, if it has any taxonomic merit, does not impinge on Pakistan. Our records are unambiguous and both sexes are deeply colored, often with upperside melanic suffusion as in *L. p. stygianus*.

We recorded this "copper" more widely than any other lycaenid: from Gilgit and Kargah at 5000ft, all valleys visited except depauperate and heavily cultivated Hooper, within the National Park at 11,500ft, in the arid and sparsely vegetated Chapchingle Valley at 13,500ft, on the approaches to Mintaka, Kilik and Dilsun passes to 14,500ft, and on the Deosai Plateau at almost the same elevation. This is not the "Hill Station" species suggested by Roberts, but a very versatile lycaenid capable of reaching a level close to the highest altitude of Himalayan butterflies.

Lycaena aditya (Moore, [1875]) (Fig. 112).

Range: Badakshan, Pamir, northern Pakistan, India, Kashmir, Afghanistan, Tajikistan.
Localities: Minapin, Muchuwar, Tharbai, approach to Mintaka and Kilik passes, above Chipursun Valley.

The taxonomy of this and related lycaenids is less than clear: Tshikolovets (1997) synonymized L. solskyi Erschoff, 1874 with L. aditya, but in the lengthy series in the Natural History Museum, London, the two are separated as species, solskyi having a much brighter hindwing ground color in the female. This color is even brighter in L. solskyi fulminans Grum-Grshimailo, 1888 from the Alai and Transalai regions. Tuzov et al. (2000) also regard aditya and solskyi as distinct species. Our material is uniform, with the female upperside hindwing much duller than the forewing and we regard these specimens as L. aditya aditya.

We found this species in several localities, each close to an altitude of 12,500ft: above Minapin (Nagar), the Muchuwar Valley, the steep mountainside pasture at Tharbai/Kalent above Sost, on the approach to both the Mintaka and Kilik passes, and above Chipursun Valley near the start of the trail leading to the Irsad Uwin Pass. The Natural History Museum (BMNH) has specimens from Shandur and other sites in Chitral, and from Yasin, the valley next-but-one to Hunza to the west. It is thus a widely distributed butterfly in the high border regions of Pakistan adjoining China and Afghanistan.

It may be noted that the black upperside markings in our female specimens, and most of those in the BMNH are much heavier than the females of aditya and the very closely related L. alpherakii Grum-Grshimailo, 1888 illustrated in Tshikolovets (1997: Fig. 26, 28).

Lycaena kasyapa (Moore, 1865) (Fig. 113a, b)

Range: occurs in Chitral, Kashmir, Baltistan to Ladakh. Over part of its range, it appears to be sympatric with the closely related L. zartaspa Moore, 1874, the distribution of which centers on the Chitral region to extreme western Gilgit Province. The two are clearly closely related, and we regard all our specimens as L. kasyapa.

Localities: Muchuwar, Tharbai (Sost); below Deosai Plateau.

We recorded this species in only two localities in Hunza: mountain slopes of the rich and barely accessible Muchuwar Valley at 11,500ft, and in the high pasture on steep slopes at Tharbai/Kalent, above Sost, at 13,500ft. It was not found on the Deosai Plateau, but occurred along the steep side of a ravine just below the plateau rim, above Skardu, Baltistan. The weather of Deosai is unpredictable, and poor more often than not: in a window of sunlight on 30 July 1998 this butterfly was common. This was the only occasion we recorded it, stressing the importance of serendipity in brief periods of field work. Conversely, another lycaenid, Lycaenides jaloka, very common on the plateau, did not descend beyond the plateau edge.

Chaetoprocata odata (Hewitson, 1865) (Fig. 114)

Range: Karakoram, Afghanistan.

Localities: Murtaabad.

Leslie and Evans (1903) provided a vivid description of this species: "At Khilas 9,000 feet in the Shishi nallah in July, this butterfly fairly carpeted the grass under the walnut trees." Walnut trees, its larval hostplant, are distributed throughout Lower and Middle Hunza, but we found C. odata only once, at Murtaabad, near Aliabad, at 7500ft, in July 1996. This is a new record for the eastern Northern Areas, where it is evidently very uncommon. Roberts (2001) notes it as a lower Himalayan valley species wherever walnut trees grow: in Kaghan, the Murree Hills and lower Chitral valleys, from 4000ft to 9000ft.

Satyrion sasanides (Kollar, [1849]) (Fig. 115)

Range: a very widely distributed hairstreak, occurring in Iran, each of the southern republics east of Turkmenistan, Afghanistan, China and northern India (Tshikolovets, 2000), in addition to records for Pakistan.

Localities: Kargah, Naltar.

We found it in only two localities: in the upper Kargah Valley above Gilgit, from 8000ft to the valley apex at 10,000ft, where it flew swiftly before nectaring on flowering shrubs, and less commonly in the Naltar Valley, in the same altitudinal range but in open, flowery patches of meadow that had escaped grazing. Marshall and de Nicéville (1890) reported S. sasanides from Baltistan, but we did not find it in our very limited foray into this vast area. Tshikolovets (1997) cites only a late nineteenth century record for the Pamir, but the nominate race is common in shrub zone of dry foothills of Uzbekistan, with dog-rose and wild almond, to an upper limit of 10,000ft (Tshikolovets, 2000). Roberts (2001) lists it from Chitral, Swat, Kohistan and Hazara, also central Baluchistan in the juniper zone, to 10,000ft.

Riodinidae

Polycaena tamerlana Staudinger, 1886

Range: this species is distributed in the Tien Shan, Pamir, the southern Republics east of Turkmenistan, Afghanistan and western China (Tshikolovets, 1997).

Localities: [Chapchingal]

We did not see this butterfly in life during our survey, but were shown specimens collected illegally in Khunjerab National Park by two French nationals. The collection site was probably the mud-flats bordering the river flowing along the Chapchingal Valley (Fig. 13), at c.13,000ft, south of the KKH just before it ascends onto the Khunjerab Plateau. We have no information on the disposition of these specimens. Verhulst (1999) again recorded it, without precise locality data, but his altitude range for "Khunjerab Pass" included the level of Chapchingal.

Ecological Notes

Deosai

The Deosai Plateau is situated in the Province of Baltistan, about 125 miles SSE of Khunjerab. Two major mountain ranges, the Hispar and Haramosh reaching 25,000ft, together with the Hispar and Chogo Lungma glaciers lie between the two. The Deosai Plateau was termed "Little Tibet" by 19th century travellers from its superficial appearance (Fig. 24), but it lies at only 13,500-14,000ft, 2000ft short of the Tibetan plateau to the south. We worked on the plateau on two occasions; additional records were obtained by Saif Ulla (PMNH).
Butterfly taxa recorded from Deosai

In the following list, taxa not found in the Hunza region are indicated (**). These have been considered along with taxa from Hunza in the above taxonomic listing. All Deosai specimens were collected within 10 miles of the edge of the plateau above Skardu, at from 13,500ft to 14,000ft, except for Parnassius simo ganymedes and Parnassius delphius workmani, recorded from sites up to 15,000ft.

** Pyrgus cashmirensis
** Hesperia comma shanduri
Parnassius delphius workmani
Parnassius hardwickii
Parnassius epaphus cachemiriensis
Parnassius simo ganymedes
Parnassius charlonius ella

Hyponephele pulchra
Hyponephele hilaris
Karanasa modesta
Boloria sipora nitida
Fabriciana adippe
Polygonia interposita
Aglais caschmirensis
Vanessa cardui
Pontia callidice
Pontia daplidice
Pieris brassicae
Pieris canidia
Colias erate
Colias fieldii
Colias eogene

Agriades jaloka
Albulina chrysopis
Polyommatus ariana
Plebejus sarta [Hungarian Nat. Hist. Mus.]
Lycaena phlaeas
Lycaena kasyapa

Divergence between the faunas of Deosai and Hunza, from our data, is as follows:
Four species recorded from Deosai (not from Hunza): Pyrgus cashmirensis, Parnassius hardwickii, Karanasa modesta, Agriades jaloka.

Five species occur on the Deosai Plateau differing infraspecifically from Hunza populations:
Parnassius delphius
Parnassius simo
Parnassius charlonius (Verhulst, 1999)
Boloria sipora
Hesperia comma

In addition, Deosai Polyommatus ariana are very distinct from those occurring in Hunza localities as described above, but have not yet been formally separated.

The incidence of incongruity between Deosai and Hunza faunas in our sample is thus 9 taxa in 28 or 32%. This is a quite dramatic divergence between localities only 125 direct-line miles apart. While this is only one instance, it serves to illustrate the role of isolation, and presumably of physical barriers, in evolutionary divergence at the infraspecific and specific level.

Interface between Oriental and Palearctic

Throughout Central Asia and beyond, the Palearctic butterfly fauna to the north interfaces with the Oriental zoogeographical zone to the south. This is a very imprecise boundary, varying from one locality to the next, reflecting the ecological and climatic conditions of each region. Furthermore, the divide between Palearctic and Oriental is not symmetrical: in the Hunza region, the northerly limit of Oriental species can be determined with some precision, but southerly incursion of Palearctic species has yet to be assessed. In Hunza and other areas in Central Asia, altitude is the chief parameter limiting the northerly movement of Oriental taxa. During our survey, two species, Papilio polyctor and Catopsilia pyrantele were recorded from 9000ft, the highest altitude of any Oriental representative. These records are certainly of vagrants from lower breeding areas, probably at 5000ft or below.

About 26 species were recorded no higher than this altitude during our survey. Of these, seven species (27%) have Oriental zoogeographical affinities: Papilio polyctor, Catopsilia pyrantele, Eurema hecabe, Danaus chrysippus, Zizeeria karsandra, Pseudozizeeria maha and Everes indica. Vanessa cardui and Lampides boeticus are virtually cosmopolitan and cannot be assigned to either zoogeographical zone. All species limited to sites above 9000ft, or extending from below 9000ft to sites at higher altitude, are exclusively Palearctic. Thus for Hunza, the northern limit of vagrant Oriental butterflies is the altitude level of 9000ft and the upper limit of breeding populations probably several thousand feet lower. Our survey of Deosai involved only the plateau and low mountain slopes above it, and the ravine just below; at the altitude of 13,000ft and above the fauna is, as expected, entirely Palearctic.

Species richness of localities

Of the localities worked during the seven years of our survey, the Gilgit area with the adjacent Kargah Valley proved one of the most diverse, with 36 species recorded. It is a well irrigated region; the altitude is low and the valley is well vegetated. Its relative diversity is not surprising and should be compared with localities at much greater altitude and often set in very arid terrain. The main Hunza Valley (along the KKH) yielded records of a similar number of species; this list is grouped together for convenience and covers numerous revisited sites from just beyond Gilgit (5500ft) to the edge of the Hunza Valley. Of this total, 33 were recorded to and including Sost (10,000ft) and four species, Polyommatus stoliczkana, Agriades pheretiades, Plebejus bellona, and Polycaena tamerlana are part of the high altitude fauna.

Localities below the high passes with the lowest species count were Hoper (25), a heavily cultivated valley with limited access to mountain slopes and Tharbai (17), a very steep mountainside overlooking Sost, briefly visited only once.

From Kherjarab National Park (KNP) 30 species have been recorded from many visits over seven years. Of these, eleven (Pyrgus alpinus, Parnassius epaphus, P. actius, P. simo, Colias cocandica, C. eogene, Karanasa leechi, Melitaea didyma; Boloria sipora, Clossiana hegemone, and Albulina asiatica) were never found below 15,000ft on the Hunza Plateau. Sixteen are known from KNP but found only below the plateau: Hesperia comma, Papilio machaon, Parnassius charlonius, P. delphius hunza, Pieris deota, Colias fieldii, Hyponephele pulchra, H. brevisigna, Melitaea fergana, Agriades pheretiades, Albulina chrysopis, Polyommatus stoliczkana, P. erigone, Plebejus bellona, Lycaena phlaeas, and Polycaena tamerlana. The list is completed by three species, Pieris brassicae, Pontia callidice and Vanessa cardui, recorded from the
Kilik was worked during the 2000 expedition; Mintaka and Irshad Uwin have been extensively worked only by GN. Differences between these sites, each richer than Kilnjerab, are discussed below.

It should be stressed that none of these species lists has any numerical/statistical significance. The time spent at each locality was not standardised, weather conditions were certainly not uniform and records for many localities were compiled over several years. Nevertheless, it is suggested that these lists provide a first approximation of butterfly diversity at the present time and, given the ongoing level of habitat degradation in some areas, a base-line against which results of future field studies may be assessed.

Variation between localities.

While several of the species totals do not vary greatly from one locality to the next, this does not mean that the range of species is uniform. Quite the contrary: during our survey only two species, *Pieris brassicae* and *Vanessa cardui*, were recorded from every locality worked. Moreover, 27 taxa were recorded from one locality only. Valleys in the Hunza complex, at the same altitude, from our limited geographical sample generally have numerous species in common, but overall each valley or high pass has a different species spectrum. This is well illustrated by the scatter of records in parts of the Distribution Table (see pp. 54-56).

Local faunal variation is perhaps most strikingly seen in the high passes: Khunjerab, Mintaka/Kilik and Irshad Uwin, particularly in the genera *Parnassius* and *Colias. Parnassius epaphus* is at times common on and above the Khunjerab Plateau, but very rare or absent on the passes to the west, but again common, at lower altitude, on the Deosai Plain. *Parnassius jaccquemontii* is unknown from Khunjerab, but is often common on the Kilik, Mintaka and Irshad Uwin passes. *Parnassius delphius hunza* is present at Tharbai, above Sost, rare in the Chapchinal Valley below the Khunjerab but unrecorded on the plateau, present on the Kilik and Mintaka passes and at times common on the Irshad Uwin Pass. *Colias marcopoloo* has never been recorded from Khunjerab, but is known from each of the passes to the west. *Karanasa leechi* is the only satyrid known from Khunjerab Plateau, but is replaced by *Karanasa bolorica* on passes to the west and into the Afghan Wakhan. *Polyommatus hunza*, despite its name, is unknown from the Hunza Valley and in Pakistan was recorded only from the Irshad Uwin Pass. *Colias marcopolo* has never been recorded from Khunjerab, but is known from each of the passes to the west.

We regard our lists as "raw data" for future field studies that add the important parameters of larval and adult plant-associations, and of phenological response to presently undocumented but obviously extreme year-to-year climatic fluctuations in the high Karakoram localities.

The dissection of the Karakoram zone into a complex system of valleys separated by high mountain ranges has undoubtedly accelerated evolutionary divergence between butterfly populations. Some examples of divergence, as for populations of *Polyommatus ariana* in Hunza and Deosai, are obvious to the eye. Other possible instances of divergence, in the absence of morphological differentiation, as for populations of *Parnassius epaphus* on the Khunjerab and Deosai plains, may be shown later by molecular genetic analysis at the DNA level. "Subspecific" differences occur between Khunjerab and Deosai populations of *Hesperia comma*, *Parnassius charlonius*, *Boloria sipora* and others, but these are merely instances where genetic divergence chances to have an obvious effect on wing pattern. Other isolating genetic mechanisms may not have such fortuitous morphological markers.

Records from Wakhan, Afghanistan.

As mentioned above, the first records of butterflies of Afghanistan were made by British soldiers in the nineteenth century. For much of the twentieth century knowledge of this fauna remained poorly known, but the work of Sakai (1981) was pivotal in revealing much of the Afghan butterfly fauna. Previously, Wyatt (1961), Wyatt and Omoto (1966a,b), and Ebert (1967) refined some aspects of taxonomy and added numerous new taxa. Howarth and Povolny (1973, 1976) gave a full account of material from five years of Czech expeditions to Afghanistan. From the time of the Soviet invasion, and thereafter during the even more damaging periods of civil war and the Taliban regime, no field work could be carried out. Even in the unlikely event of a stable government being achieved in Afghanistan in the near future, field work in much of the country will remain hazardous for many years, by virtue of several million, primarily Soviet landmines laid indiscriminately prior to 1992 across the terrain, with no thought of their long-term dangers (since 1992, the local Taliban have laid more landmines). The more recent paper by Balletto and Kudrna (1989) was based on material collected twenty years before, and was expanded into a useful checklist.

For residents of Hunza, travel across the border with Wakhan, Afghanistan, has not been difficult. Many families have members on both sides of the border, and they share a common bond in the Ismaili Muslim faith. In July 2001, Gulam Naser entered Afghanistan via the Irshad Uwin Pass and worked on butterflies for most of that month. This was made difficult not only by poor weather, but also by extreme scarcity of food. Despite these setbacks, 40 species were collected. This preliminary faunal list is given below; taxa recorded from the Hunza region have been discussed previously and are merely named, while taxa not recorded during our work in Hunza are discussed briefly. In July 2002, GN intended again to visit the Wakhan Pamir via the very high Dilsun Pass; heavy snow delayed the journey, and GN found the border closed by the government of Pakistan. Instead, the Pakistan approach to Dilsun Pass and then the Mintaka Pass region were worked extensively.

Hesperia comma mixta (Alphéraky, 1881) (Fig. 32a, b)

Tshikolovets (1997) cites this subspecies as widespread and common in several mountain ranges in SE Tajikistan, and in the Hindu Kush. Sakai (1981) records nominate *H. comma* and subspecies *shandura* for Afghanistan, the latter also occurring on the Deosai Plateau.

Pyrgus alpinus alichurensis De Jong, 1975 (Fig. 29a, b)

Listed by Tshikolovets (1997) as common across much of the Tajik Pamir, and in the eastern Hindu Kush, flying from, "mountain semideserts to meadows at 3600-4500m."

Parnassius jaccquemontii

Parnassius acutus

Pieris rapae

Pieris brassicae

Pieris deota
Colias wiskotti Staudinger, 1882 (Fig. 52a-d)
Colias Wiskotti Staudinger, O., Berlin. ent. Zeit., 26:166, pl. 2, figs 9, 10.

This Colias is widely distributed through the southern ex-Soviet Republics, Afghanistan, the Hindu Kush, Tien Shan, Pamir-Alai and western China. It was never recorded during seven visits to upper Hunza/Khunjerab, nor was it found at the Mintaka, Kilik or Irshad Uwin passes.

The Natural History Museum (BMNH) collections include specimens from Chitral district, and Leslie and Evans (1903) recorded it from the Shandur Pass. Evidently, this species follows the Hindu Kush barely into Pakistan, but is absent from the Karakoram to the east. It was found at several sites in the Wakhan Pamir, at c.14,000 ft. Both the yellow form of the female and the white form alba Verity were noted (Fig. 52d). Subspecies chrysopetera Grum-Grshimailo, 1888 is known from Afghanistan, Tajikistan and the Trans-Alai; the race occurring in northern Pakistan and the Wakhan is C. wiskotti seres Grum-Grshimailo, 1890, also found in parts of Tajikistan (Tshikolovets, 1997). The type locality of seres, "N.E. des monts Kounjout" is similar to that cited for Polyommatus hunza, and has here been located just inside China adjacent to the eastern limit of the Wakhan corridor.

Colias marcopolos
Colias erate
Colias coccinacea
Colias eogene
Pontia callidice

Baltia shawi (Bates, 1873) (Fig. 54)

A species with a very wide range, including Kirgizstan and Tajikistan (but apparently not Uzbekistan), Afghanistan, the Pamir-Alai, western Kun Lun, Karakoram, NW Himalaya, Ladakh, western Tibet, western China and northern India.

This is evidently a Hindu Kush/Pamir species. We never encountered it from Hunza, nor from any of the high passes to the west. A single specimen was obtained in July 2001 at c.15,000 ft in the Wakhan Pamir of Afghanistan. The species was discovered by the tea-trader-cum-emissary Robert Shaw in 1870 en route to Chinese Turkistan, at 18,000 ft on the Chang Lang Pass in the Kun Lun. Much of the range including northern Pakistan and the Wakhan Pamir is occupied by the nominate race; subspecies B. shawi baiatalensis Moore and B. s. karakuli Bang-Haas were described from extreme NE Tajikistan. Roberts notes it for Pakistan in Chitral district above 13,000 ft.

Karanasa alpherakyi (Avinov, 1910) (Fig. 71)

This species is known from the Pamir-Alai, Badakshan, the Hindu Kush, Tajikistan and Afghanistan. The nominate race occurs in several mountain ranges of the Tajik Pamir (Tshikolovets, 1997).

We never encountered this species in the Hunza region; indeed it has scarcely been recorded from Pakistan. The type locality of subspecies K. alpherakyi kafir Avinoof & Sweadner, 1951 was the Nuksan Pass, in the northeastern Hindu Kush on the border with Afghanistan NNW of Chitral. In July 2001 K. alpherakyi alpherakyi was recorded from several sites in the Wakhan corridor of Afghanistan, to 16,000 ft. The type locality, Pamirský Post (= Murgab) lies c.60 miles (100km) north of Wakhan in extreme eastern Tajikistan.

Paralasa chitralica
Hyponephele hilaris bori

Hyponephele pamira Lukhtanov, 1990

This species is known from the Pamir of Tajikistan, and now from the eastern Wakhan (Afghanistan). It was recorded from an area locally known as Gozan, Wakhan, NE of the Irshad Uwin Pass, in July 2001. There it flew with the much commoner Hyponephele pulchra barogihla, and with Parnassius jacquemontii, Argynnis aglaja and Albiluna chrysoptis. This population is of nominate pamira; subspecies jacobsbisi Lukhtanov, 1990 was described from Pamirsky Post (Murgab) in SE Tajikistan and from several neighboring mountain ranges.

Hyponephele pulchra barogihla
Karanasa bolorica
Argynnis aglaja vitatha
Clossiana hegemone
Melitaea didyma nadezhdae

Melitaea chitralensis shugnana Sheljuzhko, 1929 (Fig. 75a, b)

This species, described by Moore, 1901, ranges through the southern Republics east of Turkmenistan, in Afghanistan and northern India. Tshikolovets (1997) mentions Pakistan in its range; it is presumably recorded from Chitral district but Roberts (2000) omits it, and we did not encounter it in the Hunza region. Subspecies shugnana is known (Tshikolovets, 1997) from the Vakhansky and Yuzhno-Alitshursky ranges of Tajikistan, lying parallel with and immediately to the north of the Wakhan corridor. Another subspecies, enarea Frustorfer, 1916, is centered on localities in Uzbekistan (Tshikolovets, 2000). This species was not recorded for Afghanistan by Sakai (1981) but several specimens of M. chitralensis shugnana were obtained in eastern Wakhan in July 2001, from localities at c.14,000 ft extending its known range to the south.

Melitaea fergana maracandica (Staudinger, 1882) (Fig. 74a-c)

This species is widely ranging, but the subspecies recorded in the eastern Wakhan Pamir in July 2001 is known only (Tshikolovets, 1997) from several mountain ranges in the central and southern areas of eastern Tajikistan. Tshikolovets notes that another subspecies, M. fergana jacobsbisi Higgins, 1941, is present in south-western areas of eastern Tajikistan, and Sakai (1981) recorded this race from the Issyk Valley, in western Wakhan.

Melitaea shandura (Evans, 1924) (Fig. 76a, b)

This species has a relatively restricted range in Central Asia: the Pamir-Alai, Badakshan, Hindu Kush, Tajikistan and Afghanistan. Roberts (2000) records it from Museum specimens as occurring from Afghan Badakshan to the Shandur Plateau of northern Chitral. It was not recorded during our seven-year survey of the Hunza region, but was included in the collection from Wakhan Pamir, July 2001. Evidently, this is a Hindu Kush/Pamir butterfly that barely impinges on the Pakistan region.
Melitaea minerva Staudinger, 1881 (Fig. 77a, b)

This is a widely distributed Central Asian species, ranging from the Tien Shan, the Pamir-Alai, the Hindu Kush into extreme northern Pakistan, Afghanistan, the former Soviet southern republics east of Turkmenistan to extreme western China.

This Melitaea was never found during our survey, though it is known from Chitral and the Shandur Plain. In July 2001, it was present on the Afghan side of the Irshad Uwin Pass at Bai Qara. It flew there at c.15,000ft, considerably higher than Chitrali records. This joins Colias wiskotti as another instance of a butterfly entering extreme north-western Pakistan via the Hindu Kush, but further east apparently not crossing the Pamir-Karakoram divide. Tshikolovets (1997) notes that the taxonomy of Pamir populations is unclear. Subspecies palamedes Grum-Grshimailo, 1881, was described from Kirgizstan and Tytler (1926) described pale specimens from Shandur as M. minerva balbina. Our material from the Wakhan precisely matches Tshikolovets’ figures of the nominate race.

Boloria sipora hunzaica
Aglais ladakensis
Lycaena phlaeas
Lycaena aditya
Albultina chrysopis
Plebejus bellona
Aricia euomedon sarykola (see text for taxonomic status of Hunza specimens)

Polyommatus artaxerxes transalaica (Obratsov, 1935) (Fig. 107)
Lycaena allios transalaica Obratsov, N.S., Folia zool hydrobiol., 8:147.

Known from the eastern part of the Yuzhno-Alitshursky range of SE Tajikistan, just north of the Wakhan corridor, from Murgab (Pamirsky Post), the Oksu (Aqsu) and Gunt river regions further north in the Tajik Pamir (Tshikolovets, 1997). It is listed as “rare in steppe slopes at 3500-4200m.” It was found quite commonly in the Wakhan Pamir in July 2001, at intermediate altitudes of 13,000ft to 14,000ft.

Polyommatus stoliczkana
Polyommatus hunza
Polyommatus icarus
Polyommatus ariana
Plebejus sarta sartoides

From the Irshad Uwin Pass (Fig. 22), the border between Afghanistan and Tajikistan lies only c. 25 miles (40km) due north. Within Wakhan, GN followed a north-easterly trail, but precise details cannot be presented in the absence of topographical maps or GPS records. Two topographical views in the Wakhan which served as collecting areas in July 2001 are shown in Fig. 25 and 26. Only occasional isolated dwellings are present in this area. From the Irshad Uwin Pass, at c.16,000ft, the trail initially descends, but towards the Tajik border higher plateau terrain intervenes, again to 15,000-16,000ft, and all field work was carried out at 13,000ft or above. It is remarkable that only a relatively short distance beyond the limit of Pakistan, 11 taxa had not been recorded during seven periods of work in the Hunza area. But in Central Asia, with extremely complex mountain ranges and potentially isolated valleys, evolutionary divergence is as prolific as in an island archipelago, where populations are separated by water barriers (e.g. Smith et al., 1994).

General notes on Hunza butterflies

It is instructive to examine those taxa which were not recorded in Hunza. Of these, four species, Colias wiskotti, Baltia shawi, Melitaea shandura, and Melitaea minerva, have been recorded elsewhere in Pakistan (Roberts, 2000) near Chitral, at the eastern end of the Hindu Kush, west of Hunza. The center of distribution of each of these lies in the Pamir, and their presence in the Wakhan collection reflects this. What is noteworthy is the sharpness of the distinction between the Karakoram fauna of Hunza and that of Hindu Kush/Pamir. Of the remaining 7 taxa not known from Hunza, Karanasa alpherakyi and Hypepohpele pamira have not previously been recorded from Pakistan, and are again butterflies of the Pamir. Five taxa, Hesperia comma mixta, Pyrgus alpinus alciherensis, Melitaea chitralensis shugnana, Melitaea fergana maracandica and Polyommatus artaxerxes transalaica represent species recorded from the Hunza region, but from the Wakhan as different subspecies.

Of the 109 species we recorded from the Hunza region and Deosai, virtually all have described subspecies. Even Vanessa cardui, Lampides boeticus and Aglais urticae have infraspecific members, though far from Central Asia. Aricia astoria seems to be free from subspecies, and Hyponephele carbonelli was described too recently to have generated any level of usefulness among taxonomists (it may have done so evolutionarily). It is not possible to cite a meaningful number of taxa without subspecies since the value of described subspecies varies widely. For example, attached to Metaporia leucodice are numerous names for subspecies, varieties and forms: Tshikolovets (2000) observes that the species shows “remarkable individual and ecological variability. The taxa mentioned do not reflect geographic variability and are considered . . . as infraspecific”. This caution should undoubtedly be applied to a few other Central Asian taxa. Probably well below 10% of Hunza/Deosai species have useful subspecies, at least in the Central Asian region. This incidence may be compared with the faunas of the West Indies, where isolation on many islands of widely varying land area has led to a remarkable incidence of subspeciation. There, such wide-ranging species as Anteos maerula (Fabricius) (Pieridae), Marpesia chiron (Fabricius) (Nymphalidae), Eunica monima (Stoll) (Nymphalidae), have evolved no recognized subspecies. In that area of the Neotropics, about 15% of the 350 species have no infraspecific division (Smith et al. 1994). The percentage in the region of Central Asia considered in this account, where isolation is effected by very high mountains and glaciers, appears to be even smaller.

This account has considered only a very small area of Central Asia. Some perspective of the wealth of evolutionary divergence in the region is suggested by the checklist of butterflies recorded from Tajikistan, a country of 140,000km² where, for example, over 20 parnassine taxa were recorded, 15 Colias species and 40 species of Polyommatus, with additional subspecies (Tshikolovets, 2003). This meeting place of the world’s highest mountain ranges has been an evolutionary workshop.

As with the West Indian fauna, or any other fauna in a topographically complex area, butterfly taxonomy mirrors the extent and quality of field and subsequent museum work. Wyatt and Omoto (1966a,b) worked in the mountains of northeastern Afghanistan (1960, 1963) and described a new Parnassius actius subspecies, five subspecies of Colias and other pierids, three nymphalines and at least 25 new satyrid species and subspecies. Of these eight: Parnassius actius, Colias marcopolo, Metaporia leucodice, Nymphalis xanthomelas, Charaza heidenreichi, Pseudocharaza baldiva, and Hyponephele hilaris, are species recorded from Pakistan but occurring in northeast Afghanistan as different subspecies. As in the West Indian faunas, some species are represented in Central Asia by
a small number of taxonomically described races, others by an extensive list of supposedly distinct taxa. In the latter category, *Parnassius charltonius* has over 20 described subspecies (Weiss, 1991), but less than one-fifth the count for *Parnassius apollo*, surely the most taxonomically-challenged lepidopteran reaching Europe.

The extreme dissection of the terrain in Central Asia by very high mountains and glaciers, into valleys, some isolated, some confluent, has led to great evolutionary divergence, yielding many related "species" and "subspecies" particularly in the less vagile groups.

Diversity of valley faunas

During our survey, we were able only to sample the butterfly faunas of a few valleys, accessible from the main Hunza route. Map 6 illustrates the extreme complexity of the Karakoram region, and underlines the fact that our work has scarcely touched the surface of the region's potential diversity. It does not seem likely that this will be assessed more fully in the near future: on foot, the challenge is daunting. Helicopter transport into the very many remote valleys would be of inestimable help, but this assistance is at present beyond the financial capabilities of biologists working in Hunza. Eventually, however, such logistic support will be necessary to obtain comparative data from a large number of valleys, with greater or lesser levels of isolation. In parallel with museum-based taxonomic work, which remains of crucial importance, DNA analysis of selected populations will be useful, perhaps adding the time parameter to topographical/isolation considerations.

Our work over seven years has served to fill the lacuna of Hunza in the distributional map of Pakistan's butterflies. We can now plot the altitudinal zonation of species within the valley and its neighbors, and we have obtained data on the distribution of the specialized group of butterflies that can only live at great heights — from 14,000 ft, some to the snow line. How this last group survives — how the fluctuating climatic conditions from one year to the next — remains an enticing and, as yet, unapproached ecological problem. We now know something of the diversity of species present at the passes to China and Afghanistan west of Khunjerab, and we have some preliminary data on botanical structure of two of these regions, which must play a crucial part in directing the presence or absence of a given species. Unfortunately, the brevity of our times in these localities precluded observations on life history details, but we can list some of the members of the appropriate plant genera found in the two passes surveyed — Khunjerab and Kilik.

As a result of our work, several species, particularly lycaenids, are newly recorded for Pakistan. For others, the known distribution is extended, usually from Chitral, eastwards to the Hunza Valley. We do not suggest that our work has revealed all the butterflies of Hunza, but we believe that the number of unrecorded taxa is very small.

ACKNOWLEDGEMENTS

We are grateful to Dr. Shahzad Mutti, Director-General of the Pakistan Museum of Natural History (PMNH), for approving the entire project, and for providing logistical support including a 4-wheel drive vehicle during each visit. We are grateful also to Dr. Khalia Mahmood Khan, Director of the Pakistan Science Foundation, for his overall approval. The PMNH obtained the essential NOC certificates for DSS in 1994-1999 from Government Departments responsible for National Security, and for all visitors in 2000. The work was supported by the following grants (to DSS): National Science Foundation grants 9700669 (1997-1999) and 0002100 (1999-2001), National Geographic Society grant 6792-00 for the expedition.
of 2000, which was also supported by a grant to DSS from the IUCN/Pakistan (World Conservation Union). Some travel funds for the 2000 Hunza expedition were provided by the Royal Society of London. On each field visit from 1994 to 2000, we were accompanied by PMNH driver Gulam Mustafa, whose knowledge of the area, and expertise in driving under sometimes very difficult conditions, were in our experience unparalleled. The assistance in the field of Fiaz Ahmed (PMNH) on every visit was of great value, and on occasion he and GN visited localities beyond the physical capabilities of other team members. The expedition of 2000 involved a large group of Pakistanis and visitors, covering a wide range of entomological expertise, augmented by botanical and geological work. For the botanical data our thanks are due to Dr. Muqarrab Shah (PMNH) who compiled the plant species lists for Khunjerab and Kilik included here, and to Dr. Taseer Hussain for geological guidance. We express our gratitude to Mustafa, whose knowledge of the area, and expertise in driving under sometimes very difficult conditions, were in our experience unparalleled.

Fifth Edition.

The New International Atlas: Twenty-

Map 6 is from India & Bangladesh Road Atlas.

Bates, H. W.

Biddulph, J.

Bingham, C. T.

Bridges, C. T.

Butler, A. G.

Cary, J.
1806. A New Map of Chinese and Independent Tartary, from the latest authorities. [London].

Clark, J.

Cumming, W. H.

D’Abrera, B.

Desio, A., and E. Martina

Ebert, G.

Eliot, J. N., and A. Kawuozé

Eller, K.

Elwes, H. J.

Erschoff, N., and A. Field

Evans, W. H.

Grum-Grshimailo, G. E.

Hampson, G. F.
1907. Lepidoptera of the Himalayan Region. London: British Museum (Natural History), 10 pi.

REFERENCES CITED
TABLE 1. Tabulation of all species recorded from the Khunjerab region and the Deosai Plateau of Baltistan

All Khunjerab region localities are listed generally in order of ascending altitude: the numerals 1 through 13 are added to facilitate alignment of columns after the first page (the numbers have no reference to any of the maps or site numbers). Approximate altitudinal limits of each species observed during our work are given after the locality tabulation, to the right of the columns.

<table>
<thead>
<tr>
<th>HESPERIIDAE</th>
<th>G</th>
<th>C</th>
<th>F</th>
<th>K</th>
<th>\alt xl 000 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eogenes alcides</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Eogenes leslei</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Erynnis pathan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Pyrgus alpinus</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>13-16</td>
</tr>
<tr>
<td>Pyrgus cashmirensis</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>13.5-14</td>
</tr>
<tr>
<td>Hesperia c. comma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13.5-14</td>
</tr>
<tr>
<td>Hesperia c. shandura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Taractrocera danna</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAPILIONIDAE</th>
<th>G</th>
<th>C</th>
<th>F</th>
<th>K</th>
<th>\alt xl 000 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Papilio polyctor</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Papilio machaon</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>6-14.5</td>
</tr>
<tr>
<td>Parn. simo ganymedes</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>14-15</td>
</tr>
<tr>
<td>Parnassius simo lorimeri</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Parn. simo saserensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.5</td>
</tr>
<tr>
<td>Parn. charlonius dekerty</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>10-13</td>
</tr>
<tr>
<td>V Parn. charlonius ella</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Parnassius jacquemontii</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>14-16</td>
</tr>
<tr>
<td>Parnassius epaphus</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>13.5-16</td>
</tr>
<tr>
<td>Parnassius delphius hunza</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>13-17</td>
</tr>
<tr>
<td>Parn. delphius workmani</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>14-15</td>
</tr>
<tr>
<td>Parnassius actius catilina</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>15.5-16.5</td>
</tr>
<tr>
<td>Parnassius hardwickii</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>13.5-15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PIERIDAE</th>
<th>G</th>
<th>C</th>
<th>F</th>
<th>K</th>
<th>\alt xl 000 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catopsilia pyranthe</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>6-9</td>
</tr>
<tr>
<td>Euchloe daphalis</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>6-7.5</td>
</tr>
<tr>
<td>Metoporia leucodice</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>6.5-11</td>
</tr>
<tr>
<td>Pontia calidice</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>9-16</td>
</tr>
<tr>
<td>Pontia daplidice</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>5-14</td>
</tr>
</tbody>
</table>
SATYRIDAE

<table>
<thead>
<tr>
<th>Species</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>Alt x 1000 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pontia chloridice</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>7-12</td>
<td></td>
</tr>
<tr>
<td>Pieris krueperi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pieris brassicae</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>5-16</td>
<td></td>
</tr>
<tr>
<td>Pieris deota</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>10-13</td>
<td></td>
</tr>
<tr>
<td>Pieris rapae</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>5-11</td>
<td></td>
</tr>
<tr>
<td>Pieris canidia</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>6-13.5</td>
<td></td>
</tr>
<tr>
<td>Colias fieldii</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>5-14</td>
<td></td>
</tr>
<tr>
<td>Colias erate</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>15-16</td>
<td></td>
</tr>
<tr>
<td>Colias cocandica</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>13-16.5</td>
<td></td>
</tr>
<tr>
<td>Colias eogene</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>15-16.5</td>
<td></td>
</tr>
<tr>
<td>Colias marcopolo</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>7.5-10</td>
<td></td>
</tr>
<tr>
<td>Gonepteryx rhamni</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Eurema hecabe</td>
<td></td>
</tr>
</tbody>
</table>

NYMPHALIDAE

<table>
<thead>
<tr>
<th>Species</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>Alt x 1000 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melitaea didyma</td>
<td></td>
</tr>
<tr>
<td>Melitaea fergana</td>
<td></td>
</tr>
<tr>
<td>Clossiana jerdoni</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>15-16</td>
<td></td>
</tr>
<tr>
<td>Clossiana hegemone</td>
<td></td>
</tr>
<tr>
<td>V Clossiana franciscana</td>
<td></td>
</tr>
<tr>
<td>Boloria sipora hunzaica</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>15-16</td>
<td></td>
</tr>
<tr>
<td>Boloria sipora nitida</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Argyrinis aglaja</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>9-13</td>
<td></td>
</tr>
<tr>
<td>Argyrinis adippe</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Polygonia interposita</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>8-12</td>
<td></td>
</tr>
<tr>
<td>Aglais urticae</td>
<td></td>
</tr>
<tr>
<td>Aglais caschmirensis</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>8-13.5</td>
<td></td>
</tr>
</tbody>
</table>
Holarctic Lepidoptera

Vanessa cardui
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 5-16

Nymphalis xanthomelas
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 11-13

Limenitis lepechini
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 8

Danaidae

Danaus chrysippus
- 5

Lycaenidae

Lampides boeticus
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 6-9

Pseudozizeeria maha
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 5-7

Celastrina kollari
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 6

Celastrina huegeli
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 7.5-10

Pseudophilotes vicrama
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 7-9

Ereus indica
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 5-7.5

Cupido buddhista
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 8-12

Iolana gigantea
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 8

Chilades trochilus
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 9

Plebejus samudra
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 6-10.5

Agriades jaloka
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 13.5-14

V Agriades pheretiades
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- ?

Albulina asiatica
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 11.5-16

Albulina galathea
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 12

Albulina chrysopis
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 10-15

Albulina omphisa
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 6-10

Aricia agestis
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 9

Aricia eumedon
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 7-10

Aricia astorica
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 8-13

Plebejus devanica
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 8-10

Plebejus bellona
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 10-15

Plebejus sarta
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 9-11.5

Polyommatus icarus
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 9-11

Polyommatus icadius
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 6-10

Polyommatus ariana
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 9-14

Polyommatus stoliczkanana
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 10-14.5

Polyommatus erigone
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 15

Polyommatus hunza
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 15-16

Polyommatus pulchella
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 15-16

Heliopherus sena
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 5-7.5

Lycaena phlaeas
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 5-14.5

Lycaena aditya
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 12.5

Lycaena kasyapa
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 11.5-13

Chaetoprocta odata
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 7.5

Satyrium sassanides
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 8-10

Riodinidae

V Polycaena tamerlana
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- (•)
- ?

V (Verhulst 1999); () see text
APPENDIX

Botanical Records (by Muqarrab Shah, PMNH): Khunjerab Plateau

Botanical records were made by Dr. Muqarrab Shah (PMNH) during brief visits to Khunjerab in August 2000. The Khunjerab Plateau lies at 15,000-15,500ft and collecting was carried out to c16,000ft on adjacent mountain slopes. Approximate altitudinal limits are taken from Roberts et al., 1995) and Polunin and Stainton, 1984. Several species were recorded on the plateau which are listed in the above works with a considerably lower altitudinal limit: for example Potentilla pamirica, Aster altaicus, Solidago virga-aurea, Pedicularis pectinata etc. It is possible that these plants have been accidentally established on the plateau through human agency. However, it seems as or more probable that these species are established naturally on the plateau, extending the known upper limit of their distribution in the Karakoram/Himalaya. Note that the upper limit of some species (e.g. Arenaria polytrichoides, Potentilla biflora, P. dryanthoides, Aster heterochaeta etc.) refer to sites in the great Himalaya at altitudes above the permanent snowline in the Karakoram.

Rhodiola himalensis

Papaveraceae: Papaver nudicaule

Corydalis governiana

D. stenocarpa

Corydalis cava

A. heterochaeta (flaccidus)

Aster altaicus

Erigeron multiradiatus

Tanacetum falconeri

Saussurea simpsonianum

Waldheimia stoliczki

Solidago virga-aurea

Stephanomeria tomentosa

Primula denticulata

P. macrophylla

Androsace mucronifolia

Swertia speciosa

P. punctata

P. pyraminata

Menotia longifolia

Nepeta floccosa

Bistorta affinis

Compositae: Chrysanthemum pyrethroides

Leontopodium monoecephalum

Aster altaicus

A. heterochaeta (flaccidus)

Epilobium angustifolium

Saussurea simpsonianum

Tanacetum tomentosum

T. falconeri

Waldheimia stoliczki

Solidago virga-aurea

Senecio desfontainei

Anaphalis nubigena

Aster flaviculus

A. falconeri

Chrysanthemum pyrethroides

Crepis alpina

Cremanthodium decaisnei

Leontopodium leontopodium

Phyteuma alpestre

Plumbaginaceae: Acantholimon lycopodiodes

Androsace mucronifolia

Swertia speciosa

Myosotis sylvatica

P. punctata

P. pyraminata

Nepeta floccosa

10-16

9-14

10-18

9-13

11.5-20

5-14

10.5-15

14.5-18.5

10-15

6-12.5

5-15

10-16

10-15.5

8-13

8-13

9-15

9-16.5

5-12.5

9-13

10-16

12-16

11-20

10-16.5

10-16.5

10-14

10-14

7.5-16

12-17

10-17

11.5-19

11-14

8-13

6-13.5

9-15

7-16.5

9-14.5