Bloom of a Dinoflagellate Gyrodinium cf. aureolum in New Jersey Coastal Waters and Their Occurrence and Effects Worldwide

John B. Mahoney, Paul Olsen, and Myra Cohn

ABSTRACT

A dinoflagellate we identified as Gyrodinium cf. aureolum Hulburt bloomed extensively and persistently in southern New Jersey coastal waters in the summers of 1984 and 1985. This paper documents the New Jersey events, and reviews the occurrence and effects of blooms of the species elsewhere in the world. The New Jersey blooms were the first of the species reported in United States neritic waters. One certain consequence of these incidents was greatly diminished aesthetic quality of the coastal water. Mild sickness in humans, and kills of blue mussel, Mytilus edulis, and lady crab, Gratipes ocellatus, coincided with the presence of both blooms but direct association was not established. The species currently is not considered a major threat in the United States, although it bloomed at least five times in the northeast region between 1982 and 1988. In Europe, however, it has flourished in estuarine, neritic and oceanic waters since 1966, and has caused numerous mass mortalities of marine fauna. Exceptional physiological versatility offers a possible explanation for its success in diverse environments. Gyrodinium aureolum is euryhaline, eurythermal, and can use efficiently both high and low light regimes. It apparently is vigorously phototactic, so it has the potential to position itself in favorable light levels. Major questions, such as how G. aureolum changed from a newly identified species to one of great importance in thirty years, and how it adversely affects marine fauna, remain to be answered.

INTRODUCTION

Extensive blooms of an unarmored dinoflagellate, which we identified as Gyrodinium cf. aureolum Hulburt, resulted in greenish or yellow-green water discolorations along the southern New Jersey coast in the summers of 1984 and 1985. These were the first documented blooms of the species in United States neritic waters. Their most obvious consequence was diminished aesthetic enjoyment of the affected New Jersey beaches. Following exposure to the discolored water, however, some persons reported mild sickness, and marine fauna may have been adversely affected.

The first reported G. aureolum blooms in the U.S. prior to the ones we describe were in the Carmans River, New York, in 1982 and 1983 (CHANG and CARPENTER, 1985). The latest G. cf. aureolum bloom in the northeast, and the only additional reported occurrence in this country thus far, was in Maquoit Bay, Maine, in the fall of 1987, and this is suspected to have caused a kill of benthic fauna (HAugen, personal communication). The incidence and effects of the G. cf. aureolum blooms in the northeast U.S. between 1982 and 1988 do not suggest a critical situation. Nevertheless, major importance of the species in the region, with accompanying detriment to marine life, should be considered a possibility. In Europe,
since its first reported bloom in 1966, it has become the most important dinoflagellate in the North Sea and in coastal waters around Ireland, England, Denmark, Sweden and Norway (Seligier and Holligan, 1985). Many of the *G. aureolum* blooms in the coastal zone in Europe are associated with mortalities of marine fauna, and the variety of affected species is considerable (Partensky and Sournia, 1986).

The section of New Jersey coastline where *G. cf. aureolum* was most concentrated is a prime recreational area, and the persistence of the blooms aroused considerable concern. This, and the fact that *G. aureolum* blooms have had catastrophic results elsewhere in the world, dictated that the New Jersey occurrences be examined. We document the New Jersey blooms, and review information on the causative species and the development and effects of its blooms worldwide. Detailed information on the study region and discussion of the probable factors contributing to the development of the New Jersey blooms is provided in U.S. EPA (1986, 1987).

**BLOOMS OF G. aureolum AND OTHER SPECIES IN NEW JERSEY**

The *G. cf. aureolum* blooms we report occurred from mid-August to mid-September, 1984 and from mid-July to mid-August, 1985. Surveys were conducted by boat and helicopter. In 1984, the bloom was first seen, and subsequently was most intense, along approximately 43 km of the New Jersey coast, from Long Beach Island to Ocean City (Figure 1). It also occurred, with less intensity and shorter duration, southward and northward of this zone. In 1985, the earliest sighting of the bloom was in two locales, Ocean City and Hereford Inlet. Soon after, it was evident northward to Atlantic City. The bloom then persisted in the Ocean City—Atlantic City area, and was less intense north of this zone than in 1984. In both years, the blooms were most intense from the shore out to about 1 km, but extended seaward 2 to 8 km, especially around the plumes of Great Egg Inlet and, in 1984, Little Egg Inlet (Figure 1). We observed the bloom water to enter local inlets only occasionally, this being with flooding tides. Cell concentrations in the bloom zones between Sandy Hook and Island Beach, New Jersey, ranged $1.5-36 \times 10^6 \text{ cell}^{-1}$; the geometric mean cell concentration was $3.4 \times 10^6 \text{ cell}^{-1}$. Cell concentrations in areas where the bloom discoloration plainly was visible generally ranged $10-20 \times 10^6 \text{ cell}^{-1}$. On a few clear days, when a *G. cf. aureolum* bloom was present, we observed the yellow-green discoloration to be most vivid during mid-day; the same areas appeared greenish-brown several hours earlier in the morning.

Salinities ranged 30-34 %o and 32-35 %o, respectively, in the regions of the 1984 and 1985 blooms. Water temperatures were 21-25°C. In the summer of 1984, dissolved oxygen concentrations in New Jersey coastal waters were generally high, including during the time span, and in the geographical zone, of the blooms (U.S. EPA, 1985). Levels in the bloom zone during August–September ranged 2.9–7.4 mg l$^{-1}$; concentrations $< 4 \text{ mg l}^{-1}$ (likely to be stressful to components of the fauna) were infrequent. In 1985, however, dissolved oxygen levels $< 4 \text{ mg l}^{-1}$ were common, and depressed levels persisted for up to two months. Decomposition of the bloom likely exacerbated the condition. Most of the oxygen concentrations in the bloom zone from late July to early September were $< 4 \text{ mg l}^{-1}$, and many were $< 3 \text{ mg l}^{-1}$.

Symptoms in humans coincidental with exposure to the bloom water included nausea, sore throat, eye irritation and lung congestion (Marino, personal communication). Complaints were primarily from individuals, such as lifeguards, who had relatively extensive contact with the bloom water, or who were on the beaches for long periods when it was present. During both events, isolated kills of blue mussel, *Mytilus edulis*, and lady crab, *Ovalipes ocellatus*, were observed on beaches and in the surf, coincident with presence of the bloom water. The Long Beach Township Health Department observed thousands of dead mussels on the beach at Harvey Cedars, August 15–17, 1984, and the Ocean City beach patrol reported a kill of mussels and crabs on the beach during July 24–August 7, 1985 (Flicker, personal communication). Fish may have avoided the bloom water; personal observation and reports from sport fishermen suggested that fish catches were greatly diminished in a 7 km-wide area of bloom water off Little Egg Inlet in early September 1984.
Figure 1. Map of the New Jersey coastline with approximate areas of Gyrodinium aureolum bloom distribution, 1984–1985. The dark to light shading indicates dense to moderate or patchy presence of the species. The insert shows the species' two major morphological types, elliptical (upper) and fusiform (lower); redrawn from Hulburt (1957).
There are major estuaries at the northern and southern ends of the New Jersey coast (Figure 1), and these at times are the sources for populations of phytoplankton which bloom in parts of the coastal region. Phytoplankton assemblages found along the northern New Jersey coast often resemble those in the Hudson-Raritan estuary (OLSEN and COHN, 1979), reflecting such estuarine contribution and the characteristically southward direction of the Hudson-Raritan plume. The Delaware estuary is a less likely source of phytoplankton for the New Jersey coast than the Hudson-Raritan but, according to BUMPUS (1969), its plume can flow northward during periods of low runoff and southerly winds. Nevertheless, the 1984–1985 G. cf. *aureolum* blooms in south-central New Jersey apparently developed in the neritic waters of this region, because we did not observe dense populations of the species in the Hudson-Raritan estuary, Delaware Bay, or in the back bays and estuaries adjacent to the area where the blooms were most intense.

In the zone of greatest *G. cf. aureolum* bloom intensity, encompassing 43 km of coastline (15 km north and 28 km south of Atlantic City), there are five inlets (Figure 1), and these permit a greater tidal exchange than in any equivalent length of the New Jersey coast. Major nutrient input from the estuarine and coastal areas to adjacent nearshore environs likely promoted bloom development; weather and New York Bight inner shelf circulation patterns probably also were contributory factors (U.S. EPA, 1986, 1987).

We have monitored phytoplankton assemblages and nuisance blooms of various phytoplankton, including the phytoflagellates *Olisthodiscus luteus*, *Katodinium rotundatum*, and *Prorocentrum micans*, in northern New Jersey estuarine and coastal waters for over two decades. None of these were acutely toxic but some caused nausea and respiratory discomfort to bathers (MAHONEY and McLoughlin, 1977), and mortality of fauna due to dissolved oxygen depletion when the blooms collapsed (OGREN and CHESS, 1969). A major hypoxia of bottom waters following the collapse of a large bloom (areal distribution at least 13,000 km²) of the dinoflagellate *Ceratium tripos* in 1976 resulted in the greatest recorded kill of marine fauna off the New Jersey coast (MAHONEY and STEIMLE, 1979; SWANSON and SINDERMANN, 1979).

Intense spring diatom blooms in New Jersey waters are usually dominated by a few species including *Skeletonema costatum*, *Thalassiosira nordenskioldii*, and *Asterionella glacialis* (OLSEN and COHN, 1979). In summer, minute coccoid chlorophytes, including *Nannochloris atomus*, dominate the phytoplankton in the inner New York Bight, especially in the Hudson-Raritan estuary and adjacent coastal waters. In 1985 and 1986, dense blooms of these chlorophytes resulted in pale green water along much of the New Jersey coast. In 1985, the chlorophyte bloom overlapped the area of the *G. cf. aureolum* bloom. Major phytoplankton related water discolorations in general, however, have been rare along the southern New Jersey coast. The first documented dinoflagellate bloom in this region was a late-June, early-July 1978 occurrence of *Dinophysis acuta*, that extended from Brigantine, just north of Atlantic City, to Ocean City (FIGLEY, 1979). The *G. cf. aureolum* blooms, therefore, were not uniquely important in New Jersey waters, but were the most important in the affected region.

**DESCRIPTION OF G. AUREOLOM, AND TAXONOMIC DIFFICULTIES**

*Gyrodininium aureolum* (Figure 1) was first described from Cape Cod, Massachusetts by HULBURT (1957). Hulbur's description of this unarmored dinoflagellate is:

"body essentially globular, its dorsi-ventral outline either somewhat ellipsoidal or somewhat fusiform, slightly dorsi-ventrally flattened, with subequal epicone and hypocone. Length 27-34 μm, width 17-32 μm. Epicone hemispherical to broadly conical, sometimes slightlytruncate. Hypcone similar, but usually distinctly truncate, with antapex faintly indented at times. Girdle wide, moderately deep, displaced 0.20 body length. Sulcus reaching from just behind apex all the way to antapex, with slight left deflection in girdle region, rather narrow on epicone, wide on hypocone. Anterior flagellar chamber a posteriorly pointed, fingershaped cavity; posterior flagellar chamber an underhollowing of left sulcal margin opposite right girdle.
limb. Anterior flagellum completely encircling body; posterior flagellum very long, up to two body lengths. Numerous yellow-brown chromatophores present, elliptical in shape, usually arranged in a somewhat radiating manner. Nucleus spherical, or wider than long, with elongate chromatin corpuscles."

*Gyrodinium aureolum* is recognized generally to be strongly pleomorphic. TANGEN (1977) found that the morphology of *G. aureolum* cells from a major bloom along the Norwegian coast in 1976 agreed with Hulburt's original description, but morphological variability was relatively great. The ranges of cell dimensions were wider (length 19-37 µm, width 19-35 µm), and dorsi-ventral flattening of cells greater, than reported by Hulburt. Girdle displacement varied from ¼ to ½ the cell length, although it was most often ½ the cell length, as reported by Hulburt. Tangen observed numerous elliptical yellow-brown chloroplasts, as did Hulburt, but also found globular or irregular chloroplasts. These were only sometimes in a radiating arrangement, whereas Hulburt reported this to be the typical situation. The high degree of pleomorphism exhibited by an unarmed dinoflagellate, which appeared to be *Gyrodinium mirabile* when first cultured, and later resembled *Gyrodinium fissum*, led KIMBALL and FERGUSON WOOD (1965) to suspect that *Gyrodinium aureolum*, *Gymnodinium nelsoni*, and *Gyrodinium resplendens* are synonymous with *G. mirabile* or *G. fissum*.

PARTENSKY and SOURNIA (1986) regarded the problem of *G. aureolum* identification to be complex and currently unresolved. Contributing to the difficulty is the fact that various taxonomists may not study the same cytological features and may not conduct their observations in the same manner. They proposed the general adoption of a standardized checklist of cytological characteristics for the species and suggested the use, until firm taxonomic features are found, of the cautionary designation *Gyrodinium cf. aureolum* for the species found in northern European waters. More recently, PARTENSKY et al. (1988) suggested replacement of the latter appellation with *Gymnodinium cf. nagasakiense* for the species currently called *Gyrodinium aureolum* in the literature.

Our identification of *G. cf. aureolum* in the New Jersey blooms was based primarily on examination of live cells by P. Olsen and M. Cohn using light microscopy. Preserved material also was examined but this was not relied on because standard preservative such as Lugol's iodine resulted in cell distortion. Previous identification of *G. aureolum* in the New York Bight by M. Cohn was confirmed by H. Marshall (MARSHALL and COHN, 1981). We accept the advice of PARTENSKY and SOURNIA (1986), however, and regard our identification as presumptive pending resolution of the taxonomic difficulties.

Cells of *G. cf. aureolum* in our field collections from southern New Jersey coastal waters in general conformed to Hulburt's description but, reminiscent of Tangen's findings, there was considerable variation in size of cells and degree of roundness of epicone and hypocone. In live specimens, the fusiform shape (Figure 1) predominated. Numerous yellow-green chromatophores, elliptical in shape, were randomly distributed.

*Gyrodinium cf. aureolum* cells from the New Jersey blooms moved with a steady, spiraling motion. Live cells in sample bottles in the laboratory tended to concentrate near the water surface when lighted from above, suggesting positive phototaxis. Senescent cells readily settled out forming a flocculent mass; a clear gelatinous sheath often was apparent around individual senescent cells.

HULBURT (1957) and TANGEN (1977) observed the chloroplasts in *G. aureolum* to be yellow-brown but TAYLOR (1985) reported them to be pale green. TANGEN and BJORN-LAND (1981) described *G. aureolum* as a species with variable pigmentation, unlike most other photosynthetic dinoflagellates. Although the chloroplasts appeared yellow-green in cells examined from the 1984–1985 blooms off southern New Jersey, they were yellow-brown in *G. cf. aureolum* cells cultured in 1984 at the Sandy Hook Laboratory from a bloom on the southeastern shore of Long Island, New York. HULBURT (personal communication) does not regard chromatophore color to be a critical taxonomic criterion in this species. POTTS and EDWARDS (1987) reported on August 1986 bloom of *G. aureolum* off Plymouth, England that appeared greenish-brown in color.

Because of the taxonomic difficulties, pub-
lished information on *G. aureolum* may refer to that species, different strains of the species, or to closely related different species. We believe, however, that the large size, and the seriousness of the associated detrimental effects, of many of the blooms in Europe, and the possibility of such blooms occurring chronically in northeast U.S. waters, indicate the need for immediate attention on the species and its blooms in this country. We, therefore, have reviewed currently available information to reach some general conclusions, and assume that any possible errors regarding particular identifications, events, etc. eventually will be resolved. PARTENSKY et al. (1988) and BALBEC (1988) believe that both genera and species are likely to be revised within the next few years.

**SPECIES DISTRIBUTION AND BLOOM OCCURRENCE**

When *G. aureolum* was first described by HULBURT (1957), he discussed the distribution of phytoplankton species on both eastern and western sides of the North Atlantic Ocean. At that time, it apparently had not been found in Europe because he regarded it as a new species, and definitive antecedent description has not emerged. SILVA (1959), however, described an unfamiliar *Gyrodinium* sp. in Portugal, common in the Obidos Lagoon in autumn and early winter, that BRAARUD and HEIMDAL (1970) suspected was likely *G. aureolum*. The first recorded bloom of *G. aureolum* anywhere, and also the first time the species was reported in European waters, was a huge occurrence in 1966 (BRAARUD and HEIMDAL, 1970) along the Norwegian south and southwest coasts (Figure 2). It currently is the most abundant dinoflagellate in the North Sea, particularly the east and southeast regions, and in coastal waters around Ireland, England, Denmark, Sweden, and Norway (SELIGER and HOLLIGAN, 1985). Elsewhere in Europe, it has been reported in France (LASSUS et al., 1985), Germany (PARTENSKY and SOURNIA, 1986; cautionary identification), and northwest Spain (FRAGA and SANCHEZ, 1985). Its distribution also ranges to the South Atlantic because it has been reported in Brazil (ROSA and BUSELATO, 1981). In the Pacific Ocean, a red tide organism in Japan identified as *Gymnodinium nagasakiense* is considered by some investigators to be conspecific with *G. aureolum* (TANGEN, 1977; TAYLOR, 1985). PARTENSKY et al. (1988) and MATSUOKA et al. (1989), however, regard morphological characters alone to be inadequate to resolve this. PARTENSKY et al. (1988) found differences between the two, including greater DNA complement in the Japanese taxon, and formation by the European taxon of subpopulations of large and small cells, which cause them to doubt conspecificity.

In the western North Atlantic, the species has been in the New York Bight for more than a decade. It first was identified in the New York Bight in a 1974–1978 phytoplankton survey of the Hudson-Raritan estuary and adjacent New Jersey northern shore waters (OLSEN and COHN, 1979). In 1978 (MARSHALL and COHN, 1981), and 1981 (COHN, unpublished information) surveys of phytoplankton assemblages in the northeast coastal and shelf region, *G. aureolum* was reported at seven nearshore sites in the New York Bight, including three sites within 32 km of shore between Little Egg and Hereford Inlets. CAMPBELL (1973) identified the species in Gales Creek, North Carolina, MARSHALL (1980) reported it in Chesapeake Bay, and HAUGEN (personal communication) identified it in Maquoit Bay, Maine. Therefore, assuming that the various identifications were of the same species, the known range of *G. aureolum* in the eastern United States extends from North Carolina to Maine.

Blooms of *G. aureolum* in the Carmans River in Long Island, New York, in 1982 and 1983 persisted for about two months, primarily in July and August of those years; concentrations were as high as $2 \times 10^7$ cells 1$^{-1}$ (CHANG and CARPENTER, 1985). Blooms probably of *G. aureolum* were observed on the western south shore of Long Island in the summers of 1983 and 1984 (FREUDENTHAL, personal communication). These were more widespread than those in the Carmans River, extending as much as 9.5 km along the coast. Two other blooms we suspect were of *G. cf. aureolum* occurred on the New Jersey coast in 1980 and 1982, but these were localized and of short duration. The *G. cf. aureolum* blooms in southern New Jersey coastal waters in 1984 and 1985 were considerably larger than the Long Island occurrences (Figure 1).
DETRIMENTAL EFFECTS OF G. aureolum BLOOMS

The potential threats of G. aureolum blooms currently are not clear. An absence of documented poisoning of humans associated with the species suggests that a serious public health problem is unlikely. Standard assays have not detected paralytic shellfish toxin in this species in Europe (BRAARUD and HEIMDAL, 1970; HELM et al., 1974; BOALCH, 1979; OTTWAY et al., 1979). This, however, does not eliminate the possibility that other toxins that can affect humans may be produced by G. aureolum. Gyrodinium aureolum appears to be closely related to Gymnodinium flavum, Gymnodinium veneficum and Ptychodiscus brevis, which are all toxic to fish (TAYLOR, 1985). Reports during the last 20 years on the effects of G. aureolum blooms on marine animals offer varied conclusions and suggest a complex situation.

Major blooms off Norway in 1966 and 1976 were accompanied by extensive mortalities of fish and shellfish. Norwegian investigators determined that their G. aureolum strains were not ichthyotoxic and believed that the mortalities likely were due to anoxia from high respiratory consumption of oxygen by the dinoflagellates (TANGEN, 1979). Subsequently, however, workers in Scotland (TURNER et al., 1984) detected ichthyotoxin in cultures from Norway (Oslofjord); the level of toxin produc-
tion in the cultures was mediated by the level of biotin in the growth medium. TURNER et al. (1984) thought this may have important implications regarding the occurrence of toxic or non-toxic blooms of the species. They found that in rainbow trout, Salmo gairdneri, exposure to G. aureolum grown in high-biotin medium resulted, progressively, in darkening of skin, loss of equilibrium, and death. The gills showed generalized necrosis and sloughing of the epithelium, with hypertrophy and congestion of branchial vessels. Again with a Norwegian culture, ROBERTS et al. (1983) found all five concentrations of G. aureolum, ranging from 1–11 × 10^6 cells l^-1, to be lethal to 8 cm rainbow trout in 24 hours; gills displayed marked degeneration and necrosis of the lamellar epithelium. The presence of biotoxins has been confirmed in Gyrodinium cf. aureolum (PARTENSKY and VERBIST, unpublished data, cited in PARTENSKY et al., 1988). The use of inappropriate assays might explain inconsistencies in the detection of toxins associated with Gyrodinium (JONES et al., 1983). Assessment of water quality with an oyster embryo bioassay, during and after a late June-early September 1982 bloom in Plymouth Sound, England, showed that water quality was poor during the bloom and did not return to normal until 3-4 weeks after the bloom ended (THAIN and WATTS, 1984).

There have been periodic G. aureolum blooms in waters around the United Kingdom and Ireland, many with associated marine fauna kills. Some investigators reported that oxygen depletion had a role in certain of the incidents, but others have provided evidence that the species can produce lethal concentrations of toxin(s). A G. aureolum bloom in September and October 1971 was accompanied by mass mortality of lugworm, Arenicola marina, and urchin, Echinocardium cordatum, along the North Wales coast (HELM et al., 1974). HELM et al. concluded that the mortalities were not directly related to the bloom but could have been the consequence of climatic conditions that resulted in an oxygen depletion, possibly aggravated by the bloom. In contrast, investigation of a 1978 bloom along the south coast of England that resulted in mortalities of fish and invertebrates revealed the water to be cytotoxic to blue mussel, Mytilus edulis (WIDDOWS et al., 1979). Mussels experimentally exposed to cell concentrations of 1 to 3 × 10^5 1^-1 of G. aureolum had acute reduction of clearance rate and marked cellular damage in the gut.

Accidental exposure of pond-reared salmon, Salmo salar, to G. aureolum bloom water caused a mass mortality in Scotland in 1980 (JONES et al., 1982). Pathology investigations showed that death of the fish resulted from extensive damage to the gills and gut, and mouse bioassays suggested that a necrotizing toxin was present in the G. aureolum cells. The first G. aureolum bloom in Irish waters, in late July to mid-August 1976, resulted in kills of Arenicola marina and other marine life in several areas on the south coast of Ireland (OTTWAY et al., 1979). In Youghal, where the effects were most serious, besides mortalities of lugworm, large numbers of moribund fishes such as plaice, Pleuronectes platessa, moved into the shallows. Shellfish, including cockles, Cerastoderma edule, also washed ashore. Much of this fish and shellfish was consumed by local people and, perhaps coincidentally, diarrhea was prevalent in the area.

Marine fauna kills associated with G. aureolum blooms also occurred on the south and southwest coasts of Ireland in August–September, 1978 (LEAHY, 1980) and September–October 1979 (CROSS and SOUTHGATE, 1980). Oxygen depletion was not considered to be the cause of the mortalities because dissolved oxygen did not fall below saturation levels; the mortalities often occurred along open coastlines with strong mixing, and many species of benthic infauna were not harmed. Extensive mortalities of a wide range of taxa including grazers (chiefly gastropods and echinoids), predators (Nucella lapillus, crabs, fish and asteroids), and filter feeders (Mytilus spp., Anomia spp. and ascidians) resulted from a 1979 bloom in Dunmanus Bay (CROSS and SOUTHGATE, 1980). Individual blooms did not always cause widespread or catastrophic marine fauna kills. SOUTHGATE et al. (1984) observed inconsistent effects of G. aureolum blooms in Pointabullogue, Dunmanus Bay, because neither 1978 nor 1980 blooms resulted in detectable mortalities at that site. LEAHY (1981) generally found little damage to littoral animals in Roaringwater Bay associated with the 1978 bloom but, in one area where the bloom was densest, 50% of the limpets (Patella sp.) and 80% of the winkles (Littorina sp.) were killed in about 5 days.

The species also has been implicated in iso-
lated marine fauna kills elsewhere in Europe and in other regions of the world. LASSUS et al. (1985) found an association between a bloom of *G. aureolum* and 75% mortality among cultured mussels in Douarnenez Bay, France in late summer of 1982. An extensive *G. aureolum* bloom was accompanied by mortality of marine fauna on the coast of Rio Grande do Sol, Brazil (ROSA and BUSELATO, 1981). *Gymnodinium nagasakiense*, which TAYLOR (1985) considers synonymous with *G. aureolum*, has caused marine fauna kills in the coastal waters of Korea and Japan (TAKAYAMA and ADACHI, 1984). No fish or invertebrate kills were observed or reported associated with the *G. aureolum* blooms in the Carmans River, New York (CHANG and CARPENTER, 1985).

**PHYSIOLOGY AND NUTRITION**

**Salinity Tolerance**

*Gyrodinium aureolum* is euryhaline. In the seas of northwest Europe, the species blooms in waters having a salinity range of 25-35‰ (TANGEN, 1977). CAMPBELL (1973) found it in salinities from 18 to 24‰ in Gales Creek, North Carolina. CHANG and CARPENTER (1985) reported *G. aureolum* survival in salinities from 0 to 20‰ during 1982–1983 blooms in the Carmans River, New York; cell concentrations were lower in waters having salinities in the extremes of this range but otherwise were comparable.

**Temperature Tolerance**

The species tolerates a wide range of temperatures, 6-20°C, in European waters (HOLLIGAN, 1985). During a bloom in southwest Ireland, the *G. aureolum* population concentrated in higher temperature water (above 13°C) and apparently avoided water colder than 11°C (RODEN et al., 1981). Carmans River, New York blooms began at a “critical” temperature level of about 24-27°C, persisted to 30°C (the highest water temperature measured), and terminated when the temperature declined to 19-22°C (CHANG and CARPENTER, 1985).

**Light Requirements**

*Gyrodinium aureolum* can grow well in low light and is particularly well suited to exploit dynamic light environments, which are typical in ocean front regions (RICHARDSON and KULLENBERG, 1984). In high, non-saturating light regimes, photosynthesis per cell was higher when pretest acclimation was in low rather than high light. Light saturation occurred at approximately the same level (around 200 µE m⁻² s⁻¹), however, for both low and high light acclimated cells. Therefore, low-light adapted *G. aureolum* has the unusual capability to utilize low light efficiently while retaining its ability to photosynthesize maximally if the level of available light becomes high. *G. aureolum* was not photoinhibited by high light intensities (to 500 µE m⁻² s⁻¹), and its light saturation level is higher than that of many other dinoflagellates.

**Growth Characteristics**

In the July–August 1983 bloom in the Carmans River, New York (water temperature 24.5-27.0°C, initially), *G. aureolum* rate of cell division peaked just after sunrise. In the beginning of the bloom, it also had a second peak at midnight. The growth rate was 1.3 (divisions per day) at first, decreased to 0.57 at mid-bloom and, was 0.4 when the bloom began to decline (CHANG and CARPENTER, 1985). Mean growth rate over a three week incubation in 1 m diameter *in situ* plastic tubes in the Rosfjord, southern Norway (water temperature 13-15°C) was 0.27 division per day (DAHL and BROCKMAN, 1985). In laboratory cultures the growth rate was approximately 0.25 division per day; unlike other dinoflagellate species, *G. aureolum* can survive for several months in stationary phase of culture growth (PARTENSKY and SOURNIA, 1986).

**Nutrition**

The natural distribution of *G. aureolum* suggests that it prefers an environment where nitrate or ammonium, or both, are available in the daytime, and its blooms have initiated primarily in areas where nitrate is adequate in the upper water layers (PAASCHE et al., 1984). In laboratory studies, nitrate was not taken up in the dark unless the cells were N-starved; ammonium was taken up in the dark but only at approximately one-fifth of the rate in the light. Uptake of nitrate was coupled with pho-
tosynthetic carbon assimilation and, apparently, even very low light intensities are sufficient for the nitrogen uptake necessary for this species (PAASCHE et al., 1984). Nitrate uptake by *G. aureolum* in large *in situ* enclosures was highest in the daytime, and ammonium was assimilated faster than nitrate (BROCKMAN et al., 1985). Nutrient supply appears to be very critical for the species because nutrient depletion for four days caused a reduction in cell numbers, not reversible by subsequent nutrient addition. *Gyrodinium cf. aureolum* can grow in medium F/2 (GUILLARD and RYThER, 1962), which is prepared from natural sea water supplemented with nutrients, chelated metals mix and vitamins (PARTENSKY and SOURNIA, 1986). Addition of earth extract to this medium, however, or utilization of Erdschreiber medium (GROSS, 1937), which contains earth extract, resulted in increased culture yield. There currently is no evidence that *G. aureolum* has the ability to utilize organic nitrogen and phosphorus, which could provide the species an advantage in nutrient-deficient environments (PARTENSKY and SOURNIA, 1986).

**G. aureolum BLOOM DEVELOPMENT**

PARTENSKY and SOURNIA (1986) outlined certain common features of the *G. aureolum* blooms in Europe. The blooms most often appeared after a period of calm and warm weather sufficient to result in a well-established thermocline. In certain instances, this ensued after wind-induced vertical mixing of the water column. Low turbulence appears, therefore, to be a determining factor, although dense populations of *G. aureolum* may sometimes persist for a substantial period in turbulent waters. *G. aureolum* generally develops after the spring diatom blooms in environments that are relatively impoverished so that nutrient replenishment is a prerequisite. Vertical and horizontal concentration factors can be important because multiplication of the population often is insufficient to explain the observed very rapid increase in cell concentration in the bloom waters. The occurrence of a bloom in the coastal zone generally appears to be due to the transport of an offshore population shoreward to the vicinity of a front or other hydrologic discontinuity, and subsequent concentration. Bloom decline, in the majority of cases, is due to hydrologic and/or meteorological changes: wind, temperature decline, disappearance of the thermocline.

Various modes of *G. aureolum* bloom development have been observed or postulated for the outbreaks of this species in areas on both sides of the Atlantic. These include growth of an *in situ* population in an estuarine habitat with ample ambient nutrients; growth of an *in situ* population in coastal waters, previously nutrient enriched by upwelling; transport of the bloom inoculum from elsewhere with subsequent development and landward transport; and growth of a subsurface population which eventually extends to the surface.

BRAARUD and HEIMDAL (1970) attributed the 1966 *G. aureolum* bloom in Norwegian coastal waters to wind-driven upwelling that transported nutrient-rich deep water to the surface. With the consequent breakdown of stratification, *G. aureolum*, being a motile phototactic species, had an advantage over diatoms in counteracting vertical transport to below the euphotic zone. Later, heavy rainfall and land drainage reduced the salinity of surface layers, which restored stratification, and the bloom proceeded in these waters. Essentially the same hydrological situation promoted a similar bloom in 1976 (TANGEN, 1977).

An explanation proposed by LINDAHL (1983) for 1982–1983 blooms of the species in the Skagerrak (an arm of the North Sea) and along the Swedish and Norwegian coasts (Figure 2) is that the bulk of the algae grew offshore and ultimately concentrated in the salinity front along the coast. Lindahl found an association between the 1982 occurrence of *G. aureolum* and high salinity surface water along the Swedish coast and concluded that the 1982 bloom populations originated offshore and were brought into the Skagerrak by the Jutland current. Once in the Skagerrak they were transported landward by wind-induced currents. During the autumn of 1983, the main part of the *G. aureolum* population first was found along the front between offshore (Skagerrak) water and low salinity Baltic current water and, as in 1982, later was transported landward, entrained in a wind-driven surface current (LINDAHL, 1984).

In the western English Channel (Figure 2), *G. aureolum* first becomes abundant in the early summer as a component of a subsurface mixed
Dinoflagellate assemblage (HOLLIGAN, 1985). This subsurface population primarily develops at a tidal front, within a shallow thermocline between a well-illuminated, nutrient-deficient surface layer and a poorly-illuminated, nutrient-rich bottom layer. *G. aureolum* continues to increase during the mid and later summer, eventually extends to the surface, and can comprise > 90% of the phytoplankton biomass. The timing and degree of development of the bloom phase is variable from year to year. Development generally takes about one month, and the bloom may persist for another month. Other phytoplankton species are found at densities comparable with those under non-bloom conditions, so there is no evidence for competitive exclusion by *G. aureolum*. According to Holligan, frontal convergences, Langmuir circulation and internal waves are important in defining patchiness within the bloom area.

During a *G. aureolum* bloom in Norway in 1976, TANGEN (1977) observed that in Aralsfjorden, the cells concentrated at the surface in daytime in a layer which varied from 10 cm to a few meters in thickness, most often 1 m thick; bloom patches were about 100 m wide. In calm weather there was a 10-20 cm layer of clear water over the bloom patches. Tangen hypothesized lessened vertical stratification of the bloom during the night. HICKEL et al. (1971) observed nighttime bloom population maxima in the Helgoland Bight at around 6 m.

In an August–September 1978 *G. aureolum* bloom off the south coast of Ireland, concentrations of nitrate, nitrite and ammonium were all low, sometimes below detection limits, when the bloom was intense, but they increased greatly as the bloom declined (PYBUS, 1980). Phosphorus concentrations also increased but not dramatically so. No overall pattern of change in concentration of silicate, organic nitrogen and organic phosphorus was apparent. Pybus concluded that nitrate was likely the nutrient which limited development of the bloom. Silicate levels suggested lack of utilization, as might be expected in a dinoflagellate bloom. Nitrogen also may have limited a bloom on the Swedish west coast in 1982 (LINDAHL, 1983). DAHL et al. (1984) examined the role of nitrogen from precipitation and runoff in the development of a 1981 *G. aureolum* bloom along the southern coast of Norway; these sources supplied just 6-15% of the nitrogen that supported the bloom. The authors concluded, therefore, that most of the nitrogen came from the sea, probably from upwelling, and this possibly was supplemented by nitrogen obtained during diel vertical migration of the dinoflagellates.

Bloom in 1982 and 1983 in the nitrogen-rich Carmans River, New York (CHANG and CARPENTER, 1985), were very localized. The visible part of the bloom was only about 1 km long, although the species was distributed throughout the estuary. Bloom patches moved up and down river with the tidal current but never extended beyond the river mouth. Temperature was a major factor controlling the bloom (as outlined earlier). The *G. aureolum* population initially developed within one to two weeks, persisted at a level of about 10^7 cells l^-1 for about two months and then declined rapidly in late summer. Late summer decrease in temperature and light lowered the growth rate below that needed to sustain the population. These blooms are considered never to have been nutrient limited.

**DISCUSSION**

In summary, *G. aureolum* is a versatile species that has flourished in a variety of habitats. Its distribution in the seas of northern Europe suggests that the species is essentially neritic but its consistent presence in waters well away from the coast indicates that this dinoflagellate is also capable of surviving in a purely oceanic ecosystem (PARTENSKY and SOURNA, 1986). It seems to be particularly adapted to growth along ocean fronts (RICHARDSON and KULLENBERG, 1984). Various attributes contribute to its success. It is euryhaline (TANGEN, 1977) and eurythermal (HOLLIGAN, 1985). It can survive with little light and can efficiently exploit dynamic light conditions (RICHARDSON and KULLENBERG, 1984). The species seems to be vigorously phototactic (BRAARUD and HEIMDAL, 1970; TANGEN, 1977), which provides potential for it to position itself in favorable light. It thrives in environments where nitrate or ammonium or both are available in the daytime (PAASCHE et al., 1984); some of the blooms apparently have been nitrogen limited (PYBUS, 1980; LINDAHL, 1983). Additional information on *G. aureolum* nutrition, as it is developed, will likely provide further explanation of why it is so successful.
Mean growth rate when nutrient supply, light, and temperature are favorable is high compared to that of other net phytoplankton, in general, but is comparable to growth rates in similar species. Its structural fragility is in contrast to all the apparently advantageous attributes the species has. Calm habitats are more suitable than turbulent waters. Although *G. aureolum* flourishes in a diversity of habitats, bloom development in offshore waters is more common than initial development in estuarine or coastal waters. Available evidence (HOLLIGAN, 1985) suggests that the apparent toxicity of *G. aureolum* may not provide it a competitive advantage because, in the English Channel blooms, it was superimposed on but did not replace the usual phytoplankton assemblage.

A complete explanation is not available, as yet, for the transition of *G. aureolum* from being a newly identified species in 1957 to currently being the most important dinoflagellate in the eastern North Atlantic. Explanation, likewise, is not on hand for the recent occurrence of its blooms elsewhere in the world, such as the northeast U.S., in recent years. Its sudden world-wide importance raises some fundamental questions. If the species had been endemic, but so scarce that it escaped notice, then what promoted its current success? And if it previously had had limited distribution, then what enabled it to rapidly migrate around the world?

The increased incidence of *G. aureolum* in the northeast U.S. may have its basis in both far reaching and local influences. This is suggested by the first two blooms in Norwegian coastal waters. Major regional change in water quality might have favored a native *G. aureolum* population. Alternatively, an immigrant population transported cross-ocean might have been favored by changed or unchanged North Sea water quality and/or transported in crossocean. This permitted the first bloom in 1966 and subsequent rapid spread of *G. aureolum* throughout the North Sea. The next bloom in Norway, however, did not occur until 1976. The ten year gap between these blooms is not fully understood but it is known that essentially the same local hydrological situation promoted both events.

The close taxonomic relationship of *G. aureolum* to well documented ichthyotoxic species, including Florida's *Ptychodiscus brevis* (former appellation, *Gymnodinium breve*) (TAYLOR, 1985), as well as an accumulation of observational and experimental evidence from Europe indicating such toxicity, suggests that this aspect should be examined whenever it blooms. In the New York Bight, *G. aureolum* blooms in the Carmans River (CHANG and CARPENTER, 1985) did not cause marine fauna kills, but there were reports of kills of crabs and mussels coincident with the blooms in New Jersey. Mortality of marine fauna was reported associated with the *G. cf. aureolum* bloom in Maine in 1987 (HAUGEN, personal communication). If the New Jersey and Maine blooms and observed mortalities were associated, the inconsistency with the Long Island blooms is not surprising because European workers find varied toxicity. The apparent relationship between biotin level in the sea water (TURNER et al., 1984) and toxicity of *G. aureolum* blooms is an important area of inquiry.

**ACKNOWLEDGEMENTS**

We thank D. Marino, M.D., Ocean City, New Jersey, for information on the illness in humans coincidental with exposure to the bloom water. K. Berry, New Jersey DEP, provided technical assistance in phytoplankton monitoring. Personnel of the New Jersey DEP Bureau of Monitoring Management, and Bureau of Marine Water Classification and Analysis; Atlantic and Cape May County Health Departments; and the Atlantic County Regional Sewage Authority aided in field surveys. We also thank M. Cox, NMFS, for preparing the maps.

**LITERATURE CITED**


BUMPUS, D.F., 1969. Reversals in the surface drift
in the Middle Atlantic Bight area. Deep Sea Research, 16 (suppl.), 17–23.


U.S. ENVIRONMENTAL PROTECTION AGENCY,


**RESUMEN**

Un dinoflagelado que hemos identificado como *Gyrodinium cf. aureolum* Hulburt se ha desarrollado extensiva y persistentemente en las costas del Sur de New Jersey en los veranos de 1984 y 1985.

Este artículo documenta los sucesos de New Jersey y revisa las ocurrencias y efectos de otros floroscimientos de especies en otras partes del mundo. El caso de New Jersey fue el primero informado en las aguas neríticas de USA. Una consecuencia indudable de estos incidentes fue la disminución de la calidad estética de las aguas costeras. Coinciendo con ambos floroscimientos, se registraron ligeros disminuciones en los usuarios humanos y la muerte del mejillón azul, *Mytilus edulis*, y del cangrejo Ovalipes Ocellatus, aunque no se ha establecido una asociación directa entre ambos sucesos. La progresión de las especies no se considera una amenaza importante en USA aunque han florecido al menos cinco veces en la región Nordeste entre 1982 y 1988. En Europa, sin embargo, han florecido en aguas de estuarios, neríticas y oceánicas, desde 1966 y han causado numerosas mortalidades masivas de la fauna marina. La excepcional variabilidad biológica ofrece una posible explicación de su éxito en distintos ambientes. El *Gireodinium aureolum* es eurhalino, euritermo y puede utilizar eficientemente tanto regímenes luminosos altos como bajos. Aparentemente es fototáctico, es decir, tiene la capacidad de poder situarse en los niveles de luz favorables. Las principales preguntas, como con el cómo *G. aureolum* ha cambiado a partir de especies recientemente identificadas para convertirse en la fauna marina, están todavía sin responder.—Department of Water Sciences, University of Cantabria, Santander, Spain.

**ZUSAMMENFASSUNG**


**RÉSUMÉ**