
Carl H. Hobbs, III and Jerome P.-Y. Maa

Virginia Institute of Marine Science
School of Marine Science
College of William & Mary
Gloucester Point, VA 23692, USA

We thank Smith (1999) for his kind words about our recent paper (Maa and Hobbs, 1998) and agree that the several generic questions he poses need be addressed when one considers the possible dredging of an offshore feature. Indeed, in a series of projects of which our work is a small part, the U.S. Department of the Interior through the Minerals Management Service is taking a comprehensive view of the potential consequences of offshore sand mining. However we chose not to address the broad questions for the following reasons.

We intentionally limited the scope of the paper to the topic stated in the title so as to present both a discrete story and a relatively short paper. Expanding the paper to include the genesis and present dynamics of the shoal would have necessitated a much longer exposition that would have diluted the major thrust of the paper. The local, slight decrease in storm-wave energy reaching the shore following dredging and the lack of alteration of non-storm waves (i.e. it is necessary to model only storm waves, not the complete wave climate, in the analysis of potential changes) are the major points, not the story of Sandbridge Shoal itself, though we acknowledge that wave-sea floor interaction is common to both.

As Smith suggested, the genesis and geology of the shoal have been considered in papers cited in our references (primarily Kimball and Dame, 1989; Dame 1990; and Kimball et al., 1991). Also the work on the “geology” of the shoal represents a greater effort on the part of our earlier associates (Kimball and Dame) and less of ours. Hence we are reluctant, indeed unwilling, to take prime authorship in publishing work substantially performed by others. They postulated that Sandbridge Shoal formed in two stages, one during the last Pleistocene high-stand of sea level, the other during the Holocene transgression. It is likely that the shoal has been less active as sea level has approached present levels and changes only under the influence of major storms. Similarly, inner shelf currents, sediment transport, and morphodynamics on the inner continental shelf of southeastern Virginia have been addressed by others (Ludwick, 1977, 1978; Wright et al., 1987; among others). These and other works were considered by agencies charged with determining whether or not to allow dredging on Sandbridge Shoal prior to granting approval for two separate projects that together removed approximately $1.6 \times 10^6 m^3$ of sand.

We continue to address the potential problems that result from altering the bathymetry at Sandbridge Shoal and elsewhere. Kim and Maa (in progress) are assessing changes in bottom shear stress. Maa, Hobbs, and Hardaway (accepted, pending minor revisions, *JCR*) have further refined the study of potential changes resulting from dredging at Sandbridge Shoal and have developed a general use criterion for evaluating the potential impacts of such changes. Boon and Kim (1999) provided further elucidation on potential wave changes associated with different possible dredging scenarios at Sandbridge Shoal. Others of our associates are evaluating the potential impacts of dredging to both the indwelling and transient biota. Unfortunately some of this work has been specific to individual study sites and has not been submitted for journal publication.

In conclusion, the generic questions posed by Smith (1999) are indicative of the questions that must be considered in the evaluation of any sand-mining project. Our recent paper intentionally addressed only one of the many elements that must be evaluated prior to allowing modifications to the sea floor.

LITERATURE CITED

