Extraction of Eggs of Pratylenchus penetrans from Alfalfa Callus and Relationship between Age of Culture and Yield of Eggs

ROBERT A. DUNN

Studies of nematode life cycles depend on a source of uniform inoculum of known developmental stage. The egg masses of Meloidogyne spp. and eggs in cysts of Heterodera spp. have provided such inocula, but similar sources of inoculum are lacking in most groups of plant-parasitic nematodes. The purpose of this paper is to describe the procedure I have used to obtain large numbers of eggs of Pratylenchus penetrans (Cobb) from alfalfa (Medicago sativa L.) callus tissues.

Callus tissue was obtained (approximately 2 g/culture) from 10 cultures maintained as described by Riedel and Foster (3). The tissue was comminuted for 30 sec with 200 ml of 30% sucrose solution (30 g sucrose/70 ml water) in a food blender. The resulting suspension was poured into a 250-ml round-bottom centrifuge bottle and centrifuged approximately 8 min at 1500 g in a swinging-bucket head. The supernatant was poured through a 325-mesh screen to remove coarse plant debris, then through a mesh with 15-µ openings (Nitex® nylon mesh; Tobler, Ernst & Traber, Inc., 420 Sawmill River Road, P.O. Box 112, Elmsford, N.Y. 10523). Eggs of P. penetrans, approximately 24 µ X 61 µ (2), were caught on this mesh and rinsed to remove the sucrose. The residue on the mesh, including eggs, many veriform P. penetrans, and callus tissue debris, was washed into a beaker with 25 ml or less of water. This suspension was then layered on 20 ml of 30% sucrose solution contained in a 50-ml centrifuge tube by holding the tube as near horizontal as possible while the suspension was carefully poured down its side. In the resultant preparation, the aqueous suspension and underlying sucrose solution remained as separate phases with a distinct interface between them. After centrifugation for 4 min at about 1500 g (full speed in an IEC Clinical centrifuge), the eggs and veriform nematodes were concentrated in a band at the interface and the callus debris was deposited at the bottom of the tube. An aspirator bottle was used to remove the eggs from the interface. They were again collected and rinsed on the 15-µ mesh.

I freed the egg suspension of most vermiform nematodes by diluting it to 100-150 ml and sieving it repeatedly through a 325-mesh screen. Remaining nematodes were removed by pipette or pick with the aid of a stereoscopic microscope. Eggs were placed on a 15-µ mesh screen in deionized water, and second-stage juveniles which hatched were collected from the bottom of the dish.

During the development of the egg extraction procedure, a test was conducted to determine the effect of culture age on yield of viable eggs. Cultures incubated at 20-24 C for 6, 9 and 11 weeks from date of subculturing (infestation of sterile alfalfa callus tissue with nematode-infested callus from a previously established culture) were processed individually. The mean numbers of eggs recovered from four cultures of each age were 12,700, 9400 and 5100, respectively. The mean numbers of juveniles recovered from the hatching units after 26 hr of incubation at room temperature were 1068, 608 and 583, respectively. In another experiment, the greatest yields of eggs were from cultures aged 6 weeks, and cultures 10, 29 and 49 weeks from infestation yielded far fewer eggs per culture.

The technique can be adapted easily to extract eggs of other species cultured in vitro. I have also used the above procedure, with direct centrifugation of soil (1) substituted for the steps preceding the first collection on the 15-µ mesh, to extract eggs of Paratylenchus sp. and Pratylenchus penetrans from field soil.

LITERATURE CITED


Differentiation of Cysts of *Heterodera schachtii* and *H. trifolii* by Fenestral Length

G. S. ABAWI, JANICE FOSTER and W. F. MAI

The sugar beet cyst nematode, *Heterodera schachtii* Schmidt, 1871, was discovered by Mai et al. (4) in fields of 16 New York State commercial red table beet growers during a survey in 1970-1971. They reported that the clover cyst nematode, *H. trifolii* Goffart, 1932, which also has lemon-shaped cysts with bullae, was present in very low numbers in many of the fields sampled. Thus a rapid and reliable method was needed to differentiate cysts of these nematodes in the many soil samples collected.

Several workers have suggested that lemon-shaped cysts of *Heterodera* spp. could be separated by vulval cone structures (1, 2, 3, 5, 6). Oostenbrink and Den Ouden (6) suggested that for practical advisory work fenestral length may be useful in differentiating cysts of *H. schachtii* and *H. trifolii*. They reported that the average fenestral lengths of *H. schachtii* and *H. trifolii* were 32.1 and 45.6μ, respectively. They also concluded that “an average of five specimens is adequate to place a population below or above 38.7, which is the limiting value between the two species according to statistical treatment of the presented data”. Fenestral lengths reported by Mulvey (5) and Jimenez (3) substantiated this finding. Mulvey (5) also reported that no statistical correlation occurred between cyst volume and fenestral length of *H. schachtii*.

The purpose of our investigation was to determine whether fenestral length could be used to differentiate the New York populations of *H. schachtii* and *H. trifolii*, and to determine if there is a correlation between cyst length and fenestral length.

Populations of *H. schachtii* and *H. trifolii* were maintained under greenhouse conditions on red table beet, *Beta vulgaris* L. 'Ruby Queen', and an unknown variety of white clover, *Trifolium repens* L., respectively. Cysts of each nematode were divided into three groups according to length: 380-490, 570-680, and 760-870μ. The vulval cone of each cyst was cut in glycerine by a surgical eye-knife. Small drops of Zut were placed in a depression slide, and a cone with the vulva up was placed into the edge of the drops cementing the cone to the slide and leaving the cone tip protruding above the Zut. After the Zut was dry, the depression was filled with 2.5% Formalin or water, and a clover-slip placed over the depression. Fenestral length of 25 cysts of each group was measured under a compound microscope at 430X. Cysts from a field population of *H. trifolii*, extracted from heavily infested red table beet soil, were also measured.

Results (Table 1) indicate a direct correlation between cyst length and fenestral length of *H. trifolii* but not for *H. schachtii*. When the fenestral length of each cyst of *H. trifolii* was plotted against the cyst-group length, a straight line relationship was suggested.

Fenestrae of *H. trifolii* cysts were longer than those of *H. schachtii*, with little overlap (Table 1). In fact, even the smallest group of *H. trifolii* cysts had longer fenestrae than the