Evaluation of a Seed-Treatment Method with Acetone for Delivering Systemic Nematicides with Wheat and Rye

R. RODRIGUEZ-KABANA, CARL S. HOVELAND, and R. L. HAALAND

Abstract: Seeds of ‘Coker 68-15’ wheat and ‘Maton’ rye were immersed for 5 min in acetone solutions of oxamyl, carbofuran, or phenamiphos containing 0, 0.25, 0.5, 1.25, 2.5, or 5.0% (w/v) nematicide; after drying, seeds were planted in pots containing 500 gm of sandy loam naturally infested with *Hoplolaimus galeatus* and *Tylenchorhynchus claytoni*. In sterilized soil, only the 5% concentrations of all nematicides were toxic to rye, whereas both the 2.5 and 5% concentrations were damaging to wheat. Phenamiphos was generally the most phytotoxic compound. Numbers of *T. claytoni* in soil declined sharply in response to seed treatment with all nematicides. In soil planted with wheat, numbers were reduced 80% by the 1.25% treatment; little additional control was shown with higher concentrations. *Hoplolaimus galeatus* developed only in pots with rye; root populations were suppressed (30-50%) by treatment with 1.25% or higher concentrations of all nematicides. Key Words: control, oxamyl, carbofuran, phenamiphos, *Secale cereale*, *Triticum aestivum*, *Hoplolaimus galeatus*, *Tylenchorhynchus claytoni*.

Nematicides as seed treatments have not been widely used because many (such as the halogenated hydrocarbons) are too phytotoxic and because, perhaps, nonfumigants have been thought to give poor control when they are used in this manner. Because of the tolerances of seeds to organic solvents (2, 5), we felt that systemic nematicides warranted testing. This paper reports results on the efficacy of oxamyl, carbofuran, and phenamiphos in acetone solutions as seed treatment for control of selected plant parasitic nematodes.

MATERIALS AND METHODS

Seed treatment: Technical-grade oxamyl, carbofuran, and phenamiphos were dissolved in acetone at concentrations of 0, 0.25, 0.50, 1.25, 2.50, and 5% (w/v). Lots (100 gm) of seed of ‘Coker 68-15’ wheat (*Triticum aestivum* L.) and ‘Maton’ rye (*Secale cereale* L.) were immersed for 30 seconds in beakers containing 100 ml of a given solution. After immersion, seeds were dried quickly by spreading them on a sieve under a current of air. The seeds were then stored in the dark at 23 ± 2°C until used.

Phytotoxicity: The effects of the nematicides on each plant species were determined by planting treated seed in waxed cardboard cartons containing 500 gm of a methyl-bromide treated sandy loam (sand 74%, silt 15%, clay 11%). Each carton was planted with 20 seeds from a specific treatment and replicated 5 times. Cartons were arranged in a completely randomized design in the greenhouse. Emergence was determined at 14 days after planting and the degree of injury was rated on a 0 to 5 scale (0 represented no injury; 1, plants with occasional yellow spots at tips of leaves but otherwise vigorous; 2, yellow spots at tips of leaves more frequent; 3, yellow spots at tips of leaves and occasionally in other areas of the leaves; 4, yellow spots at tips and other parts of leaves with occasional marginal necrosis; 5, marginal necrosis in most leaves accompanied by frequent spotting of leaves in the stunted plants).

Nematode control: A sandy loam soil (0.5 bar) similar to that for the phytotoxicity studies was collected from a cotton field under monoculture infested with *Tylenchorhynchus claytoni* Steiner and *Hoplolaimus galeatus* (Cobb) Sher. Wax bed cardboard cartons were filled with 500 gm soil each and planted with 20 seeds from a given nematicide treatment. The cartons were arranged into seven completely randomized blocks in the greenhouse. After 1 month, plants were counted, 50-cm³ soil samples from each carton were assayed for nematodes (3), and nematodes in roots were determined by incubating washed roots for 72 h in a thin film of water in a beaker. Nematodes which emerged were counted on a 38-μm (400-mesh) sieve and counted.

All data were analyzed by analysis of variance, and differences between means were evaluated for significance with the

Received for Publication 10 January 1977.

1 Professors and Assistant Professor, respectively, Departments of Botany and Microbiology, and Agronomy and Soils, Agricultural Experiment Station, Auburn University, Auburn, AL 36830.
modified Duncan's multiple range test (4).

RESULTS AND DISCUSSION

Phytotoxicity in wheat (Fig. 1-A) was minimal for all nematicides in solutions containing less than 1% concentrations. Seeds tolerated up to 1.25% phenamiphos or carbofuran. Index values < 2 were considered acceptable since the effect was temporary and disappeared with time. The two highest concentrations of all nematicides were highly phytotoxic. Rye was most tolerant of all three nematicides (Fig. 1-B).

The number of wheat and rye plants emerging/pot in fumigated soil was little affected by dipping of seeds in the nematicide-acetone solutions; the only suppression occurred with the highest concentration of phenamiphos. In infested soil, emergence of wheat (Fig. 1-C) was increased by treatment with oxamyl or carbofuran solutions; phenamiphos had no significant effect on emergence. Emergence of rye in infested soil (Fig. 1-D) was only 64% in the control and was significantly suppressed by treatment with all nematicides at the two highest nematicide concentrations. Phenamiphos was most phytotoxic, in contrast to carbofuran, which did not affect emergence at concentrations below 2.5%. The effect of oxamyl solutions at low concentrations was variable.

FIG. 1-(A-D). Effects of nematicide seed treatments on wheat and rye. A & B) Phytotoxicity of plants in sterilized soil (0-2, negligible to slight damage; 3-4, moderate damage; 5, severe stunting and necrosis of leaves). C & D) Plant emergence in nematode-infested soil.
At sampling, the only plant-parasitic nematode in soil in significant numbers was *T. claytoni*. All nematicides suppressed *T. claytoni* at 0.5% concentration with little additional response at higher rates on wheat (Fig. 2-A). A similar trend was observed on rye. (Fig. 2-B). Soil population of non-parasitic nematodes (data not shown) followed a pattern similar to that described for *T. claytoni*. *Hoplolaimus galeatus* was the only nematode in significant numbers in the roots and only in rye (Fig. 2-C). Carbofuran effectively controlled nematodes in roots at concentrations higher than 1.25% and phenamiphos and oxamyl controlled them, by 27 and 24% respectively, with the 1.25% solutions.

Our results show that some control of *T. claytoni* and *H. galeatus* in pots can be attained by coating seeds at non-phytotoxic nematicide rates. Although the mode of action was not determined, the nematicides probably killed by contact and by systemic activity of the compound in the root. Nematode invasion at roots may have been suppressed, an action which would result in a decline of nematodes in roots and soil.

The treatment proposed in this paper, if effective under field conditions, will be particularly useful in crops such as forage species where conventional nematicide applications are considered too expensive at present (1).

LITERATURE CITED

1. HOVELAND, C. S., R. RODRIGUEZ-KABANA,

Seed Treatment as a Means of Preventing Nematode Damage to Crop Plants

B. TRUELOVE, R. RODRIGUEZ-KABANA, and PEGGY S. KING

Abstract: A procedure for treating crop seeds with aqueous solutions of the systemic nematicide oxamyl is described. Seedlings from treated seeds were more resistant to attack by parasitic nematodes. Leachate from treated seeds reduced the number of free-living nematodes in the surrounding soil. Key Words: control, oxamyl, bean, corn, cucumber, soybean, watermelon, Helicotylenchus dihystera, Meloidogyne incognita, Meloidogyne arenaria, Paratrichodorus christiei, Rotylenchus sp.

For some years, scientists have been investigating the possibility of introducing chemicals (including pesticides) dissolved in organic solvents, such as acetone or dichloromethane, into seeds (2, 3, 5, 6, 8). Introduction of chemicals into seeds in aqueous solutions has, however, generally been considered impractical (1). One reason is that the germination percentage for many seeds, particularly certain legumes, is drastically reduced after prolonged soaking in water. The cause of this sensitivity to soaking is unclear. It may be related to structural and biochemical changes and/or the development of anaerobic conditions within the seeds. However, the germinability of water-soaked seeds can often be restored by drying (4).

This paper describes a technique (patent pending) for introducing chemicals in aqueous solutions into seeds with the aim of conferring protection against nematodes on plants grown from the seeds. The method was developed by using the systemic nematicide oxamyl; however, any non-phytotoxic, systemic material which is water soluble or which can be formulated as a stable, aqueous suspension might be used in a similar manner.

MATERIALS AND METHODS

Seed treatment: The seeds used were: bean (Phaseolus vulgaris L. 'Black Valentine'), watermelon (Citrullus vulgaris L. 'Charleston Gray'), soybean (Glycine max (L.) Merr. 'Lee 58'), cucumber (Cucumis sativus L. 'Ashley'), and corn (Zea mays L. 'Pioneer 3369A').

In preliminary experiments, the length of time that seeds of each species could be soaked in water, and thereafter dried, without appreciably affecting either germination or seedling growth was determined. From a knowledge of the volume of water imbibed/gram of seed during a non-injurious soaking period, oxamyl solutions in water were prepared to introduce varying concentrations of the nematicide into seeds during a precisely timed soaking period.

For treatment, equal weights of seeds were added to a series of beakers containing an excess of each of the oxamyl solutions. The oxamyl concentration ranges used were: bean and watermelon, 0 to 10 gm/100 ml solution; cucumber, corn, and soybean, 0 to 24 gm/100 ml solution. The contents of the beakers were stirred gently several times during the imbibition period. The