Lectin Binding to *Meloidogyne* Eggs: Spiegel, Cohn 407

spective haptenic sugars prevented their adsorption by the gelatinous matrix or the egg shells, whereas incubation with sugars other than the correct hapten inhibitor did not interfere with binding of the lectins. These last findings lend support to the idea that the described lectin-binding pattern was not a result of nonspecific adsorption or uptake by the gelatinous matrix or the egg shell.

Trypsin, chymotrypsin, or pronase did not abolish the fluorescence created both in the gelatinous matrix and in the egg shells. These results suggest at least two possibilities regarding the nature of the molecules bearing the receptors for these lectins on the gelatinous matrix and the egg shells. The sugar residues are included in either a polysaccharide or a glycolipid rather than a glycoprotein, or the peptides of the glycoprotein are inaccessible to the enzymes.

LITERATURE CITED

Detection and Ultrastructural Description of a Larval Moult in the Egg of *Orrina phyllobia*

A. F. Bird¹ and C. G. Orr²

Considerable work has now been done on the nematode *Orrina phyllobia* (Thorne, 1934) Brzeski, 1981, syn: *Nothanguina phyllobia* (Thorne, 1934) Thorne, 1961, because of its potential as a biological control agent of the cosmopolitan weed, silver leaf nightshade (*Solanum elaegnifolium*) Cav. (5,6). Detailed information on the nematode’s pathological effects (7) and host range (5) is available.

There are, however, some aspects of this nematode’s life history which are not completely understood. One of these is if a larval moult occurs within the egg.

It is not always easy to determine if a moult has taken place within an egg, particularly if embryogenesis is rapid. Preliminary observations at Lubbock, Texas, (Orr, unpublished observations) have shown that embryogenesis in *O. phyllobia* takes about 36 h from single-celled eggs to hatching. This is particularly rapid when compared with some other plant parasitic nematodes. For instance, it is at least six times more rapid than *Meloidogyne javanica* (1) and *Anguina agrostis* (4) at their respective optima.

Occurrence of a larval moult within an egg is best detected when specimens, at the appropriate stage of development, are sectioned and viewed with the electron microscope. Therefore, eggs of *O. phyllobia* were collected and fixed in 4% buffered paraformaldehyde solution at Lubbock. The fixed eggs were shipped and examined in Adelaide, Australia. Eggs containing larvae were cracked, dehydrated, embedded, sectioned, and stained according to previously described techniques (3). Several eggs treated in this manner were sectioned and examined with a Philips EM 400 transmission electron microscope at 80 kV.

Two different stages of a moult within the egg are shown (Fig. 1). The cuticle of the first stage larva (L₁) of *O. phyllobia* appears to be thicker than that of *M. javanica* at this stage (2), although it is of similar

¹Research Scientist, CSIRO Division of Horticultural Research, G.P.O. Box 350, Adelaide, South Australia 5001, Australia.

²Zoologist, USDA SEA AR, Texas Agricultural Research Station, Route 3, Lubbock TX 79401, USA.
thickness to that of *A. agrostis* (4). However, this may merely be a reflection of the extent to which the cuticle has been reabsorbed at the time of fixation since the cuticles of all these L2's are partially reabsorbed during moulting. Also, the cuticle of the L1 of *O. phyllobia* appears to be structurally more complex than that of *A. agrostis* since it has a distinct striated basal layer (Fig. 1A, D) which is reabsorbed at a later stage so that the cuticle which surrounds the second-stage larva (L2) consists mostly of epicuticle (Fig. 1B, C, E). The life of the Lx cuticle is short in all the nematodes mentioned above, and it is possible that striations in the basal layer may have been present for a brief period prior to their reabsorption in *A. agrostis*, although they were never observed.

It is clear from our observations that *O. phyllobia* does moult once in its egg; therefore, the larva that emerges on hatching is an L2.

LITERATURE CITED