Temperature Effects on the Growth and Virulence of
Steinernema feltiae Strains and
Heterorhabditis heliothidis

GARY B. DUNPHY AND JOHN M. WEBSTER

Key words: Heterorhabditis heliothidis, Steinernema feltiae, Mexican strain, DD136 strain, temperature acclimation, prolonged culture, virulence.

Temperature influences the successful application of steinernematids and heterorhabditids as biological control agents against soil dwelling insects (1,3). It affects also the maturation and growth rates of Steinernema feltiae strains on meridic diets (10), nematode reproduction (12), growth in Galleria mellonella (4) and Hylobius pales (12), dauer juvenile infection potential and emergence time (11), migratory activity (3), sex ratios (4), and insect death rates (12). Studies of temperature effects on Heterorhabditis spp. are scarce. However, larvae of Choristoneura fumiferana parasitized by H. heliothidis died more slowly when incubated at 17 C than at 24 C (8).

Adapting S. feltiae strains and H. heliothidis to selected soil temperatures would likely improve control of soil dwelling insects. Burman and Pye (3) acclimated S. feltiae dauer juveniles to soil temperatures of 15-25 C by culturing the nematodes at those temperatures, but the acclimation was transient.

Our objectives were to test the potential of selecting for temperature adapted strains of S. feltiae and H. heliothidis by serial passaging the nematodes through G. mellonella larvae at specific temperatures and by prolonged culture of the nematodes on semi-defined diet in vitro at selected temperatures. Temperature adaptation was assessed by determining the yield of nematodes on artificial diet, monitoring changes in the concentration of dauer juveniles required to kill 50% (LC50) of the larvae, and determining the time required for dauer juveniles to kill 50% (LT50) of the insects at designated temperatures.

The Mexican and DD136 strains of S. feltiae (supplied by G. O. Poinar, Jr., University of California, Berkeley) and H. heliothidis NC-1 (supplied by W. Brooks, North Carolina State University, Raleigh) were cultured monoxenically on fortified lipid agar (7). Larval G. mellonella were reared until they weighed 120 mg as the sixth instar (6).

The LC50s were determined by placing individual insect larvae in 9-cm-d petri dishes containing 1-100 dauer juveniles on moistened filter paper (Whatman no. 1). The larvae were restrained with a covering of moist filter paper. Ten larvae were used for each of five replicates and each concentration of nematodes. Larval mortality was assessed at 72 hours.

The LT50s were determined by exposing individual larvae to 10 dauer juveniles in 9-cm-d petri dishes containing 1-100 dauer juveniles on moistened filter paper (Whatman no. 1). The larvae were restrained with a covering of moist filter paper. Ten larvae were used for each of five replicates and each concentration of nematodes. Larval mortality was assessed at 72 hours.

The LT50s were determined by exposing individual larvae to 10 dauer juveniles as described above. Five replicates containing 50 insect larvae per replicate were examined at 4-hour intervals for mortality until more than 75% of the larvae had died. Both the LC50s and LT50s were determined algebraically and analyzed for treatment effects by regression analysis (9).

Nematodes were passaged through G. mellonella larvae several times at a given temperature, and the LT50s were determined after either two or five passages. Dead larvae were incubated on White's water traps at the test temperature.

Only the DD136 strain of S. feltiae was subcultured monthly at 15, 20, and 25 C in vitro. LT50s were determined for dauer juveniles at their culture temperatures and at temperatures at which they had not been previously cultured; e.g., the LT50s of dauer juveniles from cultures at 15 C were determined at 15, 20, and 25 C. The total number of nematodes per dish was determined after prolonged culture at a particular temperature for a designated time and...
propagating the nematodes at that temperature and at two additional temperatures; e.g., nematodes from 15 C were cultured at 15, 20, and 25 C. Nematode yields were determined after 3 weeks incubation (7).

LC50s and LT50s of the nematodes tested declined as the incubation temperature increased when dauer juveniles from 25 C were used as inoculum (Table 1). Based upon decreasing LC50s and LT50s with increasing temperature, *H. heliothidis* was more sensitive to temperature than the Mexican strain of *S. feltiae*. In terms of LC50s at 25 C, *H. heliothidis* was the most virulent of the nematodes; next were the steinernematids. In terms of LT50s, *H. heliothidis* and the Mexican strain of *S. feltiae* were equally virulent and more virulent than the DD136 strain of *S. feltiae*.

The DD136 strain was passed through the insect five times at both 15 and 20 C. At the final passage at a stated temperature (LT50 at 15 C on fifth passage = 143 ± 3 hours; LT50 at 20 C = 64 ± 2 hours, *P > 0.05*) the LT50s were not statistically different from the initial LT50s shown in Table 1. The Mexican strain failed to develop and emerge from dead larvae after the first passage at 15 C. Dead infective nematodes were located in the hemocoels of the larvae 30 days after larval death, which confirms the ability of the infective juveniles to penetrate the host. The Mexican strain was passed through the larvae five times at 20 C. There was no significant difference in the LT50 at 20 C and the initial LT50 (*P > 0.05*). *H. heliothidis* failed to emerge from the insects during an attempted third passage at 15 C, but they readily passed through the larvae five times at 20 C. Insects at 15 C died and turned ochre in color, confirming penetration of the host by the dauer larvae and release of *Xenorhabdus luminescens*. The LT50s for *H. heliothidis* at 15 C (178 ± 2 hours) and 20 C (68 ± 5 hours) did not differ from the initial values shown in Table 1.

Prolonged in vitro culturing of *S. feltiae* strains and *H. heliothidis* at 20 and 25 C for 9 months did not alter the LT50s from those of the initial values at the respective temperatures. Prolonged culture of the DD136 strain at 15 C did not alter the LT50.

The absence of changes in LT50s and nematode yields during prolonged in vitro culture at 15 and 20 C demonstrates that the populations of steinernematids and *H. heliothidis* in the present study do not adapt to different temperatures. Transient temperature adaptation in terms of behavioral changes has been observed for the Agriotos (= Leningrad) strain of *S. feltiae* (3). It is possible that over long periods cultural practices may have reduced the genetic variability of nematode stocks and (or) their bacteria and thus changed their ability to permanently adapt to different temperatures. The euristic temperature of *S. feltiae* is believed to represent a balance between a constant driving force toward colder temperatures and a plastic drive toward warmer temperatures (3). Burman and Pye (3) suggested that permanent selection for a given temperature may be possible by mutagenesis or by isolation of nematodes from cool zones in the soil.

Our study establishes that the Mexican strain has a faster rate of kill of insect larvae than does the DD136 strain of *S. feltiae*. This finding may represent differences in host seeking and penetration activity, differences in toxin production by either the nematode–bacterium complex or the bacteria, differences in bacterial virulence, or

<table>
<thead>
<tr>
<th>Nematode</th>
<th>Incubation temperature (C)</th>
<th>LC50* (dauer juveniles/insect)</th>
<th>LT50† (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steinernema feltiae, DD136 strain</td>
<td>15 2.1 ± 0.4 64 ± 4</td>
<td>142 ± 5</td>
<td></td>
</tr>
<tr>
<td>S. feltiae, Mexican strain</td>
<td>20 3.5 ± 0.2 39 ± 2</td>
<td>136 ± 8</td>
<td></td>
</tr>
<tr>
<td>Heterorhabditis heliothidis, NC-1 strain</td>
<td>25 7.2 ± 0.3 60 ± 3</td>
<td>175 ± 5</td>
<td></td>
</tr>
</tbody>
</table>

* Concentration of dauer juveniles required to kill 50% of the insect larvae. Mean ± standard error of the mean, *n* = five replicates, mortality determined at 72 hours.
† Time required for dauer juveniles to kill 50% of the insects. Mean ± standard error of the mean, *n* = five replicates, nematode dosage of 10 dauer juveniles per larva.
the number of bacteria per dauer juvenile. Preliminary data established similar LD50s and LT50s for X. nematophilus subsp. nematophilus (from the DD136 strain) and X. nematophilus subsp. nematophilus var. mexicanus (from the Mexican strain). The absence of toxin production by either S. feltiae strain or bacterial types in a culture medium similar to the host’s hemolymph has been reported (5,6). Thus behavioral differences or differences in the number of bacteria per dauer juvenile may account for differences in virulence between the S. feltiae strains. In the present study, differences in virulence were influenced by temperature. Although the rasping denticle of H. heliothidis, which is not present in steinernematids, may account for the accelerated kill rate by the heterorhabditid (2), T. A. Rutherford (pers. comm.) has observed that steinernematid dauer juveniles kill Tenebrio molitor larvae faster than do the heterorhabditids.

LITERATURE CITED

4. Danilov, L. G. 1976. Effect of the temperature on the infestation of caterpillars of the greater wax moth (Galleria mellonella L.) by entomopathogenic nematodes (Neoaplectana carpoposae Weiser, 1955, strain “agriotos”) and on the development of the latter within the host. (In Russian; English summary.) Byulleten Vesoyuznogo Nauchno-Isledovatel’skogo Instituta Zashchity Rasteni 37:17–21.

Plant Parasitic Nematodes in New Jersey

RONALD F. MYERS

Key words: geographical distribution, check list.

Plant parasitic nematodes from New Jersey were documented before 1965 in several publications (1,2,4), but as genera and species were described, redescribed, or renamed, obsolete and often mistaken identifications were not corrected. In a recent publication, many of these early errors were repeated (3). Reidentification of many nematodes preserved during these early surveys, in addition to diagnostic work, research, and teaching conducted over two decades, resulted in a check list of plant parasitic nematodes from New Jersey (Table 1). All nematodes not found in this

Received for publication 30 August 1985.

1 Agricultural Experiment Station Publication No. D-11282-3-85. This research was supported by funds provided in part by Hatch Act and State funds.
2 Department of Plant Pathology, Cook College, Rutgers University, New Brunswick, NJ 08903.