Damage Functions and Population Changes of Hoplolaimus columbus on Cotton and Soybean

J. P. Noe


Damage functions and reproductive curves were determined for Hoplolaimus columbus on cotton cv. Deltapine 90 and soybean cv. Gordon over 2 years in field plots in Georgia. Maximum potential yield suppressions of 18% on cotton and 48% on soybean were predicted with respect to increasing Pi. Similar functions indicated yield suppressions of 38% on cotton and 30% on soybean with respect to increasing midseason nematode densities (Pm). Maximum Pf predicted by reproductive curves were 123 and 474/100 cm³ soil on cotton and soybean, respectively. Thresholds at which 10% yield suppression would occur were lower on soybean (Pi of 4) than on cotton (Pi of 70/100 cm³ soil). The economic threshold for a control measure costing $72/ha was a Pi of 60/100 cm³ soil on cotton, assuming a price for cotton lint of $1.44/kg ($0.60/lb), whereas a similar treatment would not be economically feasible on soybean at any Pi with an assumed price of $0.04/kg ($5.50/bu) soybean seed. Damage functions and reproductive curves as determined in this study offer potentially useful tools for analyzing cropping systems and providing decision tools for nematode management. Key words: cotton, cropping system, damage function, economic threshold, Glycine max, Gossypium hirsutum, Hoplolaimus columbus, nematode, reproductive curve, soybean, yield.

Full Text: