Hydraulic Lift Increases Herbivory by Diaprepes abbreviatus Larvae and Persistence of Steinernema riobrave in Dry Soil

L. W. Duncan


Citrus seedlings were grown in double pots that separated the root systems into discrete lower and upper zones to test the hypothesis that hydraulic lift affects persistence and efficacy of entomopathogenic nematodes. Three treatments were established: (i) both pots were irrigated at water potential = -15 kPa (no drought); (ii) only the bottom pot was irrigated (partial drought); (iii) neither pot was irrigated (complete drought). Steinernema riobrave infective juveniles (IJ) were added to the soil in the top pots of all treatments. During 27 days, the water potential in soil in the top pots of both the partial and complete drought treatments declined to ca. -160 kPa. A greater number of nematodes (P = 0.01) persisted in soil as motile IJ under conditions of partial drought (143/pot) than under no drought (6.1/pot) or complete drought (4.4/pot). A second experiment was initiated with the same treatments as the first, except that only half of the 20 replicates in each moisture regime were inoculated with nematodes. After 15 days, all top pots were irrigated and two larvae of the insect Diaprepes abbreviatus were added to all of the top pots in each treatment. Irrigation regimes were reinstituted until water potential in the top pots under partial and complete drought had again declined to ca. -150 kPa and the experiment was terminated. In the absence of nematodes, the damage to tap roots caused by D. abbreviatus feeding under partial drought and complete drought was 80% and 32%, respectively, of that under no drought. Numbers of motile IJ in soil were greater under conditions of partial drought (736/pot) than under complete drought (2.0/pot) or no drought (7.2/pot). Survival of D. abbreviatus and insect damage to roots were reduced by the presence of S. riobrave to a greater extent under partial drought as compared to other treatments. Hydraulic lift from the lower to the upper rhizosphere appears to have modulated the effect of dry soil conditions on feeding behavior of D. abbreviatus and created favorable conditions for persistence and efficacy of the entomopathogenic nematode.


biological control; citrus; diaprepes abbreviatus; drought; hydraulic lift; soil moisture; steinernema riobrave; water potential

Full Text: