Molecular Phylogeny of Geographical Isolates of Bursaphelenchus xylophilus Implications on the Origin and Spread of this Species in China and Worldwide

Keyun Zhang, Hui Liu, Jie Sun, Jingrui Liu, Kan Fei, Chongxing Zhang, Mingxu Xu, Jing Sun, Xiyuan Ma, Ren Lai, Yidong Wu, Maosong Lin

Abstract


The genetic diversity and phylogeny of 26 isolates of Bursaphelenchus xylophilus from China, Japan, Portugal and North America were investigated based on the D2/3 domain of 28S rDNA, nuclear ribosomal Internal Transcribed Spacer (ITS) sequences, and random amplified polymorphic DNA (RAPD) analysis. The genetic diversity analysis showed that the D2/3 domain of 28S rDNA of isolates of B. xylophilus from China, Portugal, Japan and the US were identical and differed at one to three nucleotides compared to those from Canada. ITS sequences of isolates from China and Portugal were the same; they differed at one or two nucleotides compared to those of Japanese isolates and at four and 23 nucleotides compared to those from the US and Canada, respectively. The phylogenetic analysis indicated that Chinese isolates share a common ancestor with one of the two Japanese clades and that the Canadian isolates form a sister group of the clade comprised of isolates from China, Portugal, Japan, and the US. The relationship between Japanese isolates and those from China was closer than with the American isolates. The Canadian isolates were the basal group of B. xylophilus. This suggests that B. xylophilus originated in North America and that the B. xylophilus that occurs in China could have been first introduced from Japan. Further analysis based on RAPD analysis revealed that the relationship among isolates from Guangdong, Zhejiang, Shandong, Anhui provinces and Nanjing was the closest, which suggests that pine wilt disease in these Chinese locales was probably dispersed from Nanjing, where this disease first occurred in China.

Keywords


Bursaphelenchus xylophilus; ITS; phylogeny; pinewood nematode; RAPD; systematics; D2/3 regions of 28S rDNA

Full Text:

PDF