Molecular Analysis of the Lance Nematode, Hoplolaimus spp., Using the First Internal Transcribed Spacer and the D1-D3 Expansion Segments of 28S Ribosomal DNA

C. H. Bae, A. L. Szalanski, R. T. Robbins


DNA sequence analyses of the nuclear ribosomal ITS1 region of the ribosomal DNA and D1-D3 expansion segments of the 28S gene were conducted to characterize the genetic variation of six amphimictic Hoplolaimus species, including H. magnistylus, H. concaudajuvencus, H. galeatus, Hoplolaimus sp. 1, Hoplolaimus sp. 2 and Hoplolaimus sp. 3, and two closely related parthenogenetic species, H. columbus and H. seinhorsti. PCR amplifications of the combined D1-D3 expansion segments and the ITS1 region each yielded one distinct amplicon. In the D1-D3 region, there was no nucleotide sequence variation between populations of H. columbus, H. magnistylus, Hoplolaimus sp. 2 and Hoplolaimus sp. 3, whereas the ITS1 sequences had nucleotide variation among species. We detected conserved ITS1 regions located at the 3' and 5' end of ITS1 and also in the middle of the ITS1 among Hoplolaimus species. These regions were compared with sequences of distantly related Heterodera and Globedera. PCR-RFLP and sequence analysis of ITS1 and 28S PCR products revealed that several haplotypes existed in the same genome of H. columbus, H. magnistylus, H. seinhorsti, H. concaudajuvencus and Hoplolaimus sp. 1. Maximum likelihood and maximum parsimony analysis using the combined ITS1 and D1-D3 expansion segment sequences always produced trees with similar topology; H. columbus and H. seinhorsti grouped in one clade and the other six species (H. galeatus, H. concaudajuvencus, H. magnistylus, Hoplolaimus sp. 1, Hoplolaimus sp. 2, Hoplolaimus sp. 3) grouped in another. Molecular analysis supports morphological schemes for this genus to be divided into two groups based on several phenotypic traits derived from morphological evolution.


28S gene; clades; D1-D3 region genome; haplotypes; Hoplolaimus; lance; ITS1; nematode

Full Text: