Population Dynamics of Heterodera glycines in Conventional Tillage and No-Tillage Soybean/Corn Cropping Systems

G. R. Noel, L. M. Wax


The effects of no-tillage (NT), conventional tillage (CT), and crop rotation on soybean yield and population dynamics of Heterodera glycines were compared during a 7-year study in a silty clay loam soil with 6% organic matter. Either H. glycines-resistant 'Linford' soybean or susceptible 'Williams 82' soybean was rotated with corn and grown on 76-cm-wide rows in both tillage systems. Soybean was planted in 1994, 1996, 1998, 1999, and 2000. Yield of Linford was significantly greater than Williams 82 in all years. Soybean yield was affected by tillage in 1999 and 2000. No-tillage production tended to support more reproduction (R = number of eggs at harvest/number of eggs at planting) on both cultivars. The largest R for Williams 82 were in 1998: 58.35 for NT plots and 11.78 for CT plots. For Linford, the largest R were 12.09 for NT plots in 1996, and 3.71 for CT in 1999. When corn was planted, R decreased more in NT. When soybean was planted in years subsequent to 1994, numbers of eggs at harvest (Pf) were greater for Williams 82 NT than for Williams 82 CT or Linford in both tillage systems; however, crop rotation with corn negated these population increases. The soil became suppressive to H. glycines in 1999 and was suppressive in 2000. After the 3 years of continuous soybean, Pf per 250 cm³ soil were 2,870 for Williams 82 NT, 791 for Williams 82 CT, 544 for Linford NT, and 990 for Linford CT in 2000, compared with Pf of 13,100 for Williams 82 NT, 15,000 for Williams CT, 2,360 for Linford NT, and 2,050 for Linford CT in 1994. Describing population dynamics solely on the basis of R was not adequate, but also required independent examination of initial populations following overwintering and Pf after the growing season. Planting soybean either NT or CT in rotation with corn did not result in long-term increases in numbers of H. glycines eggs.


conservation tillage; crop loss; glycine max; heterodera glycines; nematode management; no-till; population dynamics; soybean; soybean cyst nematode

Full Text: