Effect of Crotalaria juncea Amendment on Squash Infected with Meloidogyne incognita

K.-H. Wang, R. McSorley, R. N. Gallaher

Abstract


Two greenhouse experiments were conducted to examine the effect of Crotalaria juncea amendment on Meloidogyne incognita population levels and growth of yellow squash (Cucurbita pepo). In the first experiment, four soils with a long history of receiving yard waste compost (YWC+), no-yard-waste compost (YWC-), conventional tillage, or no-tillage treatments were used; in the second experiment, only one recently cultivated soil was used. Half of the amount of each soil received air-dried residues of C. juncea as amendment before planting squash, whereas the other half did not. Crotalaria juncea amendment increased squash shoot and root weights in all soils tested, except in YWC+ soil where the organic matter content was high without the amendment. The amendment suppressed the numbers of M. incognita if the inoculum level was low, and when the soil contained relatively abundant nematode-antagonistic fungi. Microwaved soil resulted in greater numbers of M. incognita and free-living nematodes than frozen or untreated soil, indicating nematode-antagonistic microorganisms played a role in nematode suppression. The effects of C. juncea amendment on nutrient cycling were complex. Amendment with C. juncea increased the abundance of free-living nematodes and Harposporium anguillulae, a fungus antagonistic to them in the second experiment but not in the first experiment. Soil histories, especially long-term yard waste compost treatments that increased soil organic matter, can affect the performance of C. juncea amendment.

Keywords


free-living nematode; nematode-trapping fungi; organic amendments; root-knot nematode; soil ecosystem; soil nutrient; sunn hemp; tillage

Full Text:

PDF