New records, nomenclatural changes, and taxonomic notes for select North American leaf beetles (Coleoptera: Chrysomelidae)

Edward G. Riley
Department of Entomology
Texas A&M University
College Station, Texas 77843, USA

Shawn M. Clark
West Virginia Department of Agriculture
1900 Kanawha Blvd., East
Charleston, West Virginia 25305, USA

Arthur J. Gilbert
California Department of Food and Agriculture
2889 N. Larkin, Suite 106
Fresno, California 93727, USA

Abstract. New records, nomenclatural changes and taxonomic notes are presented for select North American leaf beetles (Coleoptera: Chrysomelidae). The following genera are newly recorded from the United States: *Nesaecrepida* Blake, 1964; *Acallepitrix* Bechyne, 1959; *Margaridisa* Bechyne, 1958; *Parchicolia* Bechyne and Springlóv de Bechyne, 1975; *Demotina* Baly, 1874 (Eumolpinae). The following species are newly recorded from the United States: *Neolemadorsalis* (Olivier, 1791) (Criocerinae); *Charidotella bifoseulata* Boheman, 1855 (Hispinae: Cassidini); *Syphrea flavicollis* (Jacoby, 1884) (Galerucinae: Alticini); and *Promecosoma inflatum* LeFèvre, 1877, and *Demotina modesta* Baly, 1874 (Eumolpinae). The following new synonymies are proposed: *Deloyala clavata*, var. *diversicollis* Schaeffer, 1925, transferred from synonymy with *Plagiometriona clavata* (Fabricius, 1798) to synonymy with *P. clavata testudinaria* (Boheman, 1855); *Chrysomela hybrida* Say, 1824, downgraded from subspecies of *Calligrapha lunata* (Fabricius, 1787) to full synonymy of *Calligrapha lunata* (Fabricius); *Chrysomela casta* Rogers, 1856, downgraded from subspecies of *Zygogramma sutoralis* (Fabricius, 1775) to full synonymy of *Zygogramma sutoralis* (Fabricius); *Trirhabdactus gurneyi* Blake, 1951, downgraded to synonym of *Trirhabda caduca* Horn, 1893; *Scelida mimula* Wilcox, 1965, downgraded to synonym of *Scelida nigrivorus* (Jacoby, 1888); *Exora californica* Wilcox, 1953, downgraded to synonym of *Pteleon brevicornis* (Jacoby, 1887); *Palaeothonia arizonensis* Blake, 1950, downgraded to synonym of *Lupraea discrepans* (Schaeffer, 1932); *Haltica nigritula* Linell, 1898, downgraded to synonym of *Nesaecrepida asphalitica* (Suffrian, 1868); *Cryptophyphalus reinhardi* Sundman, 1965, downgraded to synonym of *Cryptophyphalus mutabilis* Melsheimer, 1847. The tribes *Chalepini* Wiese, 1910, and *Uroplatini* Weise, 1910 (Hispinae), are synonymized, and both of these family-group names are recognized as *nomen protecta*. The family-group name *Octotomites* Chapuis, 1875, is recognized as a *nomin protecta*. *Coptocycla testudinaria* Boheman, 1855, is downgraded from specific status to a subspecies of *Plagiometriona clavata* (Fabricius, 1798); *Cassida bicolor* (Fabricius, 1798) is recognized as a valid subspecies of *Charidotella sexpunctata* (Fabricius). The genus *Hemiphrynus* Horn, 1889, is removed from synonymy with *Phrynocephalinae* and reinstated as a valid genus; *Rhabdopterus weisei* (Schaeffer, 1920) is removed from synonymy with *Rhabdopterus praetexus* (Say) and reinstated as a valid species. The following new combinations are proposed: *Synetocephalus wallacei* (Wilcox, 1965), transferred from *Pseudoluperus*; *Nesaecrepida infuscata* (Schaeffer, 1906), transferred from *Monomacra*; *Acalepitrix nitens* (Horn, 1889), transferred from *Epitrix*; *Margaridasa atriventris* (Melsheimer, 1847), transferred from *Hornallia*; *Parchicolia iridis* (Olivier, 1808) and *P. tibialis* (Olivier, 1808), transferred from *Monomacra*; and *Coleothorpa panochensis* (Gilbert, 1981), transferred from *Coscinoptera*; *Promecosoma arizonae* (Crotch, 1873), transferred from *Metaxyonycha*; *Tymnes chrysia* (Olivier, 1808), *T. oregonensis* (Crotch, 1873), and *T. thaleia* (Blake, 1977), transferred from *Colaspis*. The following new replacement name is proposed: *Triarius nigrofusca*, for *Luperodes flavoniger* Blake, 1942 (not Laboissiere, 1925). The identities of *Griburis equestris* (Olivier, 1808) and *G. larvarius* (Newman, 1840) are discussed.
Introduction

In this paper we record taxonomic notes and changes on select North American Chrysomelidae and report collection records for species newly recorded from the United States. This information is presented here so that it may be included in the *Catalog of the Leaf Beetles of America North of Mexico* (Riley, Clark and Seeno, in prep.) and in the chrysomelid chapter of the second volume of *American Beetles* (Riley, Clark, Flowers and Gilbert in Arnett and Thomas, in prep.).

The collections cited below include: AJGC, Arthur J. Gilbert Collection, Fresno; BMNH, British Museum of Natural History, London; CMNH, Carnegie Museum of Natural History, Pittsburgh; EMEC, Edward G. Riley Collection, College Station; EMEC, Essig Museum, University of California, Berkeley; FSCA, Florida State Collection of Arthropods, Gainesville; GHNC, Gayle H. Nelson Collection, Blue Springs; MCZ, Museum of Comparative Zoology, Harvard University, Cambridge; MSEM, Mississippi State Collection, Mississippi State; OSUC, Ohio State University, Columbus; RHTC, Robert H. Turnbow Collection, Fort Rucker; SMCC, Shawn M. Clark Collection, Charleston; TAMU, Texas A&M University, College Station; UAZC, University of Arizona, Tucson; UGC, University of Georgia, Athens; UIC, University of Idaho Collection, Moscow; UMRM, Enns Museum, University of Missouri, Columbia; USNM, United States National Museum of Natural History, Washington.

Criocerinae

Neolema dorsalis (Olivier)

Crioceris dorsalis Olivier, 1791: 201

This widespread Neotropical species has been collected from Starr County in extreme southern Texas where a large colony was discovered along the banks of the Rio Grande. This population occurs on *Commelina elegans* H. B. K. (*Commelinaeae*). The present report represents the first record of this species from the United States.

Hispinae: Chalepini

Chalepini Weise, 1910

Octotomites Chapuis, 1875: 311, nomen oblitum

Chalepini Weise, 1910: 69, nomen protectum

Uroplatini Weise, 1910: 69, nomen protectum

Two tribes, Chalepini Weise and Uroplatini Weise, are separated by a single trivial character, the number of antennomeres. Among the included genera, there is a continuous range in the number of freely articulated antennomeres with genera of the Chalepini having 10 or 11 and genera of the Uroplatini having 9 or fewer. The fusion of antennomeres across taxa proceeds from the terminal segments towards the scape resulting in an enlarged terminal segment that may sometimes possess variously developed annulae. We cannot find other characters for distinguishing two tribes among this group of genera; therefore, we propose to merge these two tribes (NEW SYNONYMY).

The oldest available family-group name for this group is Octotomites Chapuis, 1875, based on *Octotoma* Dejean, 1836. To our present knowledge, this family-group name has not been used as a valid name since its proposal and had been almost completely ignored by workers during the 1900's. The genus *Octotoma* was grouped with similar genera and placed in the tribe Uroplatini by Weise, 1910. Both family-group names Chalepini and Uroplatini date from the same work (Wiese, 1910) and both have been in long-standing usage as separate valid names for tribes of hispine beetles. The following publications from the last 50 years use both Chalepini and Uroplatini as valid names: Arnett, 1968, 1985; Balsbaugh and Hays, 1972; Chen, 1973; Chen, et al., 1986; Downie and Arnett, 1996; Ford and Cavey, 1985; Hatch, 1971; Jolivet and Hawkeswood, 1995; LeSage, 1991; Peck and Thomas, 1998; Riley and Enns, 1979; Seeno and Wilcox, 1982; Suzuki, 1996; Uhlmann, 1957, 1964a, 1964b; and Wilcox, 1954, 1975. The following additional publications use Chalepini as a valid name: Butte, 1968a-c, 1969; Ramos, 1996; Staines, 1993; Staines and Riley, 1994; and Virkki, et al., 1992. The following additional publications use Uroplatini as a valid name: Riley, 1985; Staines, 1986a & b, 1988, 1989a and b, and 1998.

Although Octotomites is the older family-group name and would normally have priority, prevailing usage must be maintained in this case (ICZN, 1999, Article 23.9.1). We hereby recognize both Chalepini
Fig. 1-2, *Plagiometriona clavata testudinaria* (Boheman): 1, Jamaica Beach, Texas [EGRC]; 2, 9-13 mi. E Todos Santos, Baja California Sur., Mexico [EGRC]. 3, *Plagiometriona clavata clavata* (Fabricius), College Station, Texas [EGRC]. 4, *Griburius equestris* (Olivier), male, College Station, Texas [TAMU]. 5, *Griburius larvatus* (Newman), male, Big Pine Key, Florida [EGRC]. 6, *Griburius montezuma* (Suffrian), dark form, female, 9 mi. E Hemphill, Texas [TAMU]. Figs. 4-6, dorsal and lateral views to scale bar, face and pygidial views at higher magnification.
and Uroplatini as nomina protecta over Octotomites, a nomen oblitum (ICZN, 1999, Article 23.9.2 and glossary, p-111). We use the name Chalepini as the valid name over Uroplatini for the newly combined group, favoring this name for no reason other than its stem, Chalepus Thunberg, which seems to be the more widely known generic name.

Hispinae: Cassidini

Charidotella bifossulata (Boheman, 1855: 135)

Material of this species is known from Arizona and represents the first records for the United States. This species is likely to be confused with *Charidotella sexpunctata* (Fabricius), especially specimens from Arizona and the Mexican state of Sonora which are smaller and narrower in form than those found in most of western Mexico and further south. *Charidotella bifossulata* may be distinguished from *C. sexpunctata* by the shape of the clypeus which is nearly flat and has the basal corners weakly angled. In *C. sexpunctata*, the surface of the clypeus has a distinct broad impression before the base, and the basal corners are broadly rounded. Preliminary study of the hind wing has revealed what appears to be another distinguishing feature of this species, namely the lack of microtrichia on the veins circumscribing the radial cell. In *C. sexpunctata*, these veins are densely covered with microtrichia. More study is needed to evaluate this character in these and other *Charidotella* species.

Charidotella sexpunctata bicolor (Fabricius)

Cassida sexpunctata Fabricius, 1781: 109 [nomenotypical subspecies]

Cassida bicolor Fabricius, 1798: 83

Charidotella sexpunctata bicolor: LeSage in Bosquet, 1991: 323

Metriona bicolor, var. *floridana* Schaeffer, 1925: 235

This common Convolvulaceae-feeder ranges from southern Canada to northern Argentina and thus has the widest range of any Western Hemisphere tortoise beetle. Its synonymy is lengthy (Borowiec, 1999).

We propose to retain the name *Cassida bicolor* Fabricius at subspecific rank for the form occupying the majority of the Nearctic range. In *C. s. bicolor* the venter of body is entirely black except for the narrow margins of the ventrites which are yellowish, and the blackish maculae on inferior surface of elytron are small to absent. This form occurs in all of the United States, except Arizona, and in adjacent eastern Canada. In *C. s. sexpunctata* the venter of the body ranges from black with extensive pale areas to entirely pale (at least the sides of metasternum are pale in addition to the broad lateral margins of the ventrites), and the maculae on the inferior surface of the elytral disc are large. This form occurs in southeastern Arizona and southern and central Texas southward to Argentina. Some specimens from South America have the venter of the body entirely dark as in *C. s. bicolor*.

A large gap exists in the Nearctic range of *C. sexpunctata*, this gap encompasses the drier southwestern United States and adjacent Mexico. On either side of this gap, the ranges of the forms we maintain as subspecies meet. On the eastern side of the distribution gap in eastern Texas occurs a narrow zone of overlap in the character states separating the two subspecies. Here the ranges of the subspecies meet, and specimens are found which exhibit character states intermediate between the two. On either side of this region (central and south Texas to the west and Louisiana to the east) specimens can be clearly assigned using the characters given above. Too few specimens are available from north Texas and Oklahoma to demonstrate a clear zone of character intergradation, but it is likely that such a zone occurs there as well. To the west of the distribution gap, it is unclear exactly where the two forms meet because this beetle is not particularly common in northeastern Mexico or Arizona. The
two specimens examined from Arizona are assign-
able to the nomenclotypical form. The size of the
eytral spots found in populations presently treated
as C. s. bicolor from California approach the size of
those in C. s. sexpunctata from northwestern Mex-
ico, possibly indicating a closer genetic relationship
to the nomenclotypical form than to the populations of
eastern North America.

The form of C. sexpunctata described by Schaeffer (1925) as variety floridana is a larger immaculate
form of C. s. bicolor. All Floridian populations of C.
sexpunctata lack the maculae on the inferior surface
of the elytra. These maculae are gradually regained
in populations occurring in surrounding states as
one moves away from Florida. There does not
appear to be a clear break between immaculate and
maculate forms, nor is there a clear break in body
size. Specimens from populations of southern Flor-
da are conspicuously larger than specimens from
northern Florida and the adjacent southeastern
United States. However, one observes a gradual
decrease in body size as one moves incrementally
northward up the Florida peninsula. We retain
Schaeffer's name as a strict synonym of C. s. bicolor.

The other synonyms of C. sexpunctata described
from the United States, namely Cassida bistriput-
tata Herbst, 1799; Cassida pallida Herbst, 1799;
Cassida aurichalcea Fabricius, 1801; and Coptocyca
aurisplendens Mannerheim, 1843, are here also re-
garded as synonyms of C. s. bicolor.

Plagiometriona clavata testudinaria (Boheman)

NEW STATUS (figs. 1-2)
Cassida clavata Fabricius, 1798: 83 [nomenclotypical
subspecies] (fig. 3)
Coptocyca testudinaria Boheman, 1855: 390 NEW
PLACEMENT as subspecies of Cassida clava-
ta Fabricius, 1798)
Coptocyca asperata Boheman, 1855: 395
Deloyala clavata, var. diversicollis Schaeffer, 1925:
235 NEW SYNONYM

Our examination of hundreds of specimens has
convinced us that the Mexican, Central American
and northern South American Plagiometriona testu-
dinaria (Boheman) can not be maintained as any-
thing more than a subspecies of Plagiometriona
clavata (Fabricius) which is found throughout the
eastern United States and adjacent Canada. The
variety diversicollis proposed by Schaeffer for spec-
imens from Arizona and Texas is of the same size and
coloration of P. testudinaria of Mexico and Central
America. We feel the recognition a single species
with two subspecies is appropriate in this case. The
nomenclotypical P. clavata is smaller and with darker
brownish coloration of the elytral and pronotal discs;
most of the pronatal disc is dark brownish (fig. 3).
Specimens of P. c. testudinaria are almost always
slightly larger than the nomenclotypical form, and
they have the elytral disc lighter brownish in color;
the pronotal disc is pale or largely pale with variably
developed dark maculae (figs. 1-2). Additional vari-
ations in color pattern, including the named form
Coptocyca asperata Boheman, are found in Mexico
and Central America, but these appear to be only
variations within populations containing typical spec-
imens of P. c. testudinaria. Plagiometriona c. testu-
dinaria is also more variable in the shape of its
outline when viewed from above and in its pronatal
surface texture which may be microreticulate, ap-
ppearing dull without polished luster. This later
condition is especially well developed in populations
of the Louisiana and Texas coastal areas. These
color forms and other variations are not found in P.
c. clavata. The subspecies are parapatric with P. c.
clavata found throughout the eastern half of the
United States into eastern Texas. Plagiometriona c.
testudinaria ranges from the coastal areas of Texas
and southwestern Louisiana to Arizona and south-
ward to northern South America. The subspecies
meet in eastern Texas where they probably inter-

Chrysomelinae

Trachymela sloanei (Blackburn)
Paropsis sloanei Blackburn, 1896 (1897): 681

Approximately 120 species comprise the genus Tra-
chymela Weise, all being endemic to the Australian
Region (Weise, 1916). In December, 1997 one spe-
cies, T. sloanei (Blackburn) was collected at River-
side, California. Since then this beetle has been
collected in the southern California counties of Los
Angeles, Orange, San Bernardino, San Diego, Santa
Barbara, and Ventura. This beetle is considered a
naturalized introduction and is now very abundant
in many areas of southern California. In 2000 this
species was collected near Dunnigan, California
(Yolo County), and in early 2001 specimens were
collected in the cities of Arbuckle and Williams,
California (Colusa County) (R. L. Penrose, personal
communication). These latter two counties are in
northern California near Sacramento. Adults and larvae feed on the leaves of red gum eucalyptus, *Eucalyptus camaldulensis* Dehnh. (Garrison, 1998), a behavior that has earned this species the status of a pest.

In applied agricultural literature and various related communications, this beetle is commonly referred to as the Australian tortoise beetle. The reference to “tortoise beetle” in this case is a misnomer because that name refers to the “cassids” (several tribes of the chrysomelid subfamily Hispinae) and *Trachymela* is a member of the Chrysomelinae.

Calligrapha lunata (Fabricius)

Chrysomela lunata Fabricius, 1787: 69

Chrysomela hybrida Say, 1824: 449 NEW SYNONYMY

Chrysomela lunata Fabricius and *Chrysomela hybrida* Say are currently classified in the genus *Calligrapha* Chevrolat and are generally recognized as subspecies of a single species. Diagnostic characters separating the so-called subspecies include the dark discal marking of each elytron (a single broad longitudinal stripe, as opposed to three narrow longitudinal stripes) and the lateral elytral punctures (completely confused, as opposed to a tendency towards rows) (Wilcox, 1972). Our examinations of numerous specimens, many of them deposited in the Canadian National Collection, show that one form is indeed more common in eastern North America, while the other is more common in the West. However, the area of intergradation is very large and numerous beetles occur far outside of the normally expected range for the color form. Although authors such as Kovalev and Medvedev (1983) have questioned the validity of subspecies recognition for the two forms, they did not formalize the synonymy. Based on our own investigation, this synonymy is now enacted. The names *Chrysomela festiva* Fabricius, 1775: 100 and *Chrysomela pulcra* Fabricius, 1792: 313 (previously treated as synonyms of either *Z. s. suturalis* or *Z. s. casta*) are here also regarded as strict synonyms of *Z. suturalis*.

Galerucinae: Galerucini

Trirhabda caduca Horn

Trirhabda caduca Horn, 1893: 69

Trirhabda gurneyi Blake, 1951: 326 NEW SYNONYMY

Hogue (1970) recognized the synonymy of *Trirhabda gurneyi* Blake, with *Trirhabda caduca* Horn. However, his dissertation has never been published and this synonymy has therefore not been formalized. Based on our own investigations, we concur with his assessment, and the taxonomic change is here enacted.

Galerucinae: Luperini

Scelida nigricornis (Jacoby)

Cneorane nigricornis Jacoby, 1888:604

Scelida mimula W. lcox, 1965: 95 NEW SYNONYMY

Wilcox (1973) transferred *Cneorane nigricornis* Jacoby to the genus *Scelida* Chapuis, but he did not recognize the synonymy with *Scelida mimula* Wilcox. Our examinations of the female holotype of *C. nigricornis* [BMNH] from Durango, Mexico, the male holotype of *S. mimula* [OSUC] from Arizona, and numerous other specimens assignable to one or
the other of these names indicates that the differences between the two are variable, inconsistent, and not adequate for species separation. In comparison with most specimens examined, the holotype of *C. nigricornis* is a little larger, and the elytra are not so metallic. However, within populations readily identified as *S. mimula*, a few specimens are nearly identical with the holotype of *C. nigricornis*, and intermediate specimens are not uncommon.

Synetocephalus wallacei (Wilcox) NEW COMBINATION

Pseudoluperus wallacei Wilcox, 1965: 113

Examination of the male holotype of *Pseudoluperus wallacei* Wilcox (CMNH) and of 12 other specimens reveals that, except for the uniformly dark color, this species is similar to those classified in the genus *Synetocephalus* Fall. It fits the diagnostic characters given in the generic key provided by Clark (1998).

Triarius nigroflavus Riley, Clark, and Gilbert NEW NAME

Luperodes flavoniger Blake, 1942: 64 [not *Luperodes flavonigrum* Laboissiere 1925: 100]

Luperodes flavoniger Blake (currently classified in the genus *Triarius* Jacoby) is a primary homonym of the Angolan species *Luperodes flavonigrum* Laboissiere, differing only in the male rather than neuter ending of the name. Therefore, a replacement name is here provided for Blake’s species.

Pteleon brevicornis (Jacoby)

Exora brevicornis Jacoby, 1887: 582

Exora californica Wilcox, 1953: 52 NEW SYNONYM

Among species currently classified in the genus *Pteleon* Jacoby, Wilcox described *Exora californica*, distinguishing it from *Exora brevicornis* Jacoby based on perceived differences in punctuation, microsculpture, pubescence, and especially the aedeagus. Later (Wilcox, 1965), he gave additional emphasis to the color of the head. Our own examinations of numerous specimens show that these characters are variable, inconsistent, and not adequate for species separation. Accordingly, we treat the two names as synonyms.

Galerucinae: Alticinae

Lupraea discrepans (Schaeffer)

Systena discrepans Schaeffer, 1932: 244

Palaeothona arizonensis Blake, 1950: 180 NEW SYNONYM

Examination of syntypical material of *Systena discrepans* Schaeffer [USNM] and the holotype of *Palaeothona arizonensis* Blake [USNM] has confirmed our belief that these two names apply to a single species. Blake (1950) was apparently unaware that the species described as a “Systema” by Schaeffer actually belonged to the group of beetles she was studying.

Hemiphrynus Horn REVISED STATUS

Hemiphrynus Horn, 1889: 212. Type species: *Phrynocephaphila intermedia* Jacoby, 1884, by monotypy

This genus is cited as a synonym of *Phrynocephaphila* Baly, 1861: 201 (type species *Phrynocephaphila pulchella* Baly, 1861) in recent literature (Scherer, 1962; Wilcox, 1975; Furth and Savini, 1996). We feel *Hemiphrynus* should stand as valid because of its narrow, depressed prosternal process and the short lower frons and genae. In *Phrynocephaphila* the prosternal process is a broad flat plate and the genae are long and frequently carinate. Scherer (1962, 1983), who placed *Hemiphrynus* in synonymy with *Phrynocephaphila*, apparently misinterpreted comments made by Horn (1889), believing *P. pulchella* Baly was Horn’s choice of type species for *Hemiphrynus*.

Nesaecrepida Blake

Nesaecrepida Blake, 1964: 21. Type species: *Haltica asphaltina* Suffrian, 1868, by original designation

Until now, this genus has only been recorded from the West Indies. Present study of specimens of *Nesaecrepida asphaltina* (Suffrian) from the West Indies and syntypes [USNM] of *Haltica nigritula* Linell, 1898: 484, described from Texas, has shown that these two names are synonyms (NEW SYNONYM). A second species described from Texas, *Laeticainfuscata* Schaeffer, 1906: 250, also belongs in *Nesaecrepida* (NEW COMBINATION). Blake’s (1964) comparative notes relate this genus to *Creptidodera*, but in reality it is closely related to *Syphrea* Baly. Contrary to her description, the procoxal cavities are open in this genus.
Acallepitrix J. Bechyné

Acallepitrix J. Bechyné, 1956: 592 [unavailable, type species not designated]

Syphrea flavicollis (Jacoby)

Haltica flavicollis Jacoby, 1884: 294

This Mexican species, described from Cuernavaca (Morelos), is here recognized as occurring in the United States, Baja California Sur, and other Mexican states. Our identification of the species is based on external comparison with syntypical material contained in the Bowditch collection [MCZ]. This species has been repeatedly associated with *Argythamnia (= Ditaxis)*, Euphorbiaceae.

JALISCO: vic. Chamela, VII-19-1993 [1 TAMU].

OAXACA: 7-8 km. E Tehuantepec, X-24-1976, on *Cenfuegosia roset* [7 TAMU].

PUEBLA: 7.3 mi. SW Ixucar de Matamoros, VII-22-1981 [1 TAMU].

Santa Cruz Co., Arivaca, VIII-19-1972 [2 EGRC].

TEXAS: Brewster Co., Heath Canyon Ranch, VII-3-1999, on *Argythamnia neomexicana* Muell. Arg. [57 EGRC].

Margaridisa J. Bechyné

Margaridisa J. Bechyné, 1958: 653. Type species: *Cepedodora flavescens* Baly, 1876, by original designation

A single described species north of Mexico, *Crepidodera atriventris* Melsheimer, 1847: 165, belongs in *Margaridisa* (NEW COMBINATION). *Margaridisa* is closely allied to the Nearctic genus *Hornaltica* Barber, 1941: 66 (typespecies, *Diphaulaca bicolorata* Douglas, VIII-26-1971 [1 EGRC]. 3 mi. E Douglas, VIII-11-13-1964 [1 TAMU]. 8 mi. NE Douglas, IX-7-1974 [3 EGRC]. On *Hornaltica* the ocular sulci are nearly horizontal; the pronotum has sparse, small to moderate-sized punctures; the rows of elytral punctures are somewhat irregular, especially apically; and the aedeagus has a short, angular flange on each side before the apex. The corresponding characters in *Margaridisa* are diagonal ocular sulci, impunctate or micropunctate pronotum, regular rows of elytral punctures, and lack of an angular flange on either side of the aedeagus before the apex.

Parchicola J. Bechyné and Springlova de Bechyné

Parchicola J. Bechyné and Springlová de Bechyné 1975: 63. Type species *Monomacra yena* Bechyné, 1956, by original designation

This genus was split from *Monomacra* Chevrolat, a large and diverse "catch-all" genus found throughout
the Neotropical region, and several other genera were also created out of this genus (Bechyne and Springlová de Bechyne 1975, 1977). Two of our North America species formerly assigned to Monomacra belong to Parchicola: Altica iris Olivier, 1808: 702 and Altica tibialis Olivier, 1808: 697 (NEW COMBINATIONS). Recorded food plants for these two species are Passiflora spp. (Passifloraceae). The generic placement of our other two species of Monomacra, namely Lacticabumeliae Schaeffer, 1905: 172 and M. opaca Wilcox, 1953: 57, is much less clear. From Schaeffer’s (1905) account and two specimens [EGRC] of M. opaca labeled as having been taken on Bumelia lanuginosa in Arizona, it appears that these two species are both associated with Bumelia (Sapotaceae).

Eumolpinae

Promecosoma Lefévre, 1877

Promecosoma Chevrolat in Dejean, 1836: 409

[nomen nudum]

Promecosoma Lefévre, 1877: 126. Type species: Promecosoma abdominale Lefévre, 1877, by subsequent designation of Bechyne, 1950

Schultz (1970) and Wilcox (1975) listed two species from Arizona as members of the genus Metaxyonycha Chevrolat. However, this is an incorrect generic assignment for both species given our current understanding of these two genera (see Flowers, 1996). Both species are correctly assigned to Promecosoma. One of these species, Colaspis arizonae Crotch, 1873: 45, has remained incorrectly placed until now (NEW COMBINATION). The second species, P. flohri Jacoby, 1890: 219, was first recorded from north of Mexico by Schultz (1970) who stated that he identified specimens from Arizona by comparison to the syntypical material. Despite his rather detailed treatment, Schultz expressed some doubt about the identity of the Arizona specimens and left open the possibility that they may not be conspecific with the types of P. flohri. Our examination of the Bowditch collection (MCZ) and one specimen in the UAZ collection determined as Metaxyonycha flohri by Schultz reveals that the Arizona material belongs to P. inflatum Lefévre, 1877: 132, not to P. flohri.

United States records for P. inflatum: Arizona:

Rhabdopterus weisei (Schaeffer)

Colaspis subaenea Schaeffer, 1919 (1920a): 328 [not Jacoby, 1890]

Colaspis weisei Schaeffer, 1920b: 117 [replacement name for Colaspis subaenea Schaeffer, 1920a]

Based on our study of *Rhabdopterus* material from the lower Rio Grande valley of Texas, we are reinstating this species as valid. It was incorrectly synonymized by Schultz (1977) with the widespread *R. praetextus* (Say) with which it is sympatric. It is easily distinguished from *R. praetextus* not only by the shape of the male median lobe (illustrated by Barber, 1943), but also by the form of the male hind tibia, its smaller size, more rotund shape and coarser punctuation of the dorsum.

Tymnes Chapuis

Tymnes Chapuis, 1874:310. Type species: Tymnes verticalis Chapuis, 1874, by monotypy

Three species currently classified in *Colaspis* are here transferred to *Tymnes*: Colaspis chrysis Schaeffer, 1808: 866, Typophorus oregonensis Crotch, 1873: 38 and Colaspis thaleia Blake, 1977: 418 (NEW COMBINATIONS). Although not developed as strongly as in some other *Tymnes* species, these three species possess the expanded proepisternal lobes characteristic of *Tymnes*. They also possess the reduced pygidial groove found in *Tymnes* and the general habitus of the genus (narrow pronotum, head retracted, short legs). *Tymnes* has traditionally been assigned to the section Edusites Chapuis of the tribe Eumolpini along with several Old World genera with transverse rugulae on the elytra. This character is absent or expressed to varying degrees in our North America species, but it is a very weak character for the establishment of a division within the tribe. We propose to abandon the use of this section, at least in North America, since we can find no other reason to keep *Tymnes* separate from the bulk of the genera in the Eumolpini. We place *Tymnes* in the section Iphimeites Chapuis.

Demotina modesta Baly

Demotina modesta Baly, 1874: 164

This species is here recognized as a naturalized introduction to North America. Its native range
includes Japan and Korea. The earliest North American record known to us is a specimen collected in 1970 from northern Georgia [UGC]. This species is now widespread in the southeastern United States, being known from North Carolina and Tennessee and from there southward to include all the coastal states to Texas. It is known to be parthenogenetic in parts of its native range (Isono 1988, 1990b), and, to date, no males are known from North America. This beetle can be very abundant, especially on oaks (Quercus spp., Fagaceae), an association also noted in its native range (Isono, 1988). The fact that this beetle has been overlooked in North America for almost 30 years can be attributed to its great similarity in appearance to our native species of Xanthonia Baly, a genus whose taxonomy is poorly known, and to the fact that it is of very little, if any, economic importance. Demotina modesta is distinguished from North American Xanthonia by its dorsal vestiture which is composed of narrow recurved scales and by the serrate margins of the pronotum. In Xanthonia, the dorsal vestiture is entirely of hair-like setae and the pronotal margins are entire. See Isono (1990a, 1990b) for taxonomic notes on Demotina.

Cryptocephalinae: Clytrini

Coleothorpa panochensis (Gilbert) NEW COMBINATION

Coscinoptera panochensis Gilbert, 1981: 364

Moldenke (1981) restricted the definition for *Coscinoptera* and moved most species formerly included in this genus to his new genus *Coleothorpa*. The above species was proposed under the older concept for *Coscinoptera*. It is here formally transferred to *Coleothorpa*.

Griburius equestris (Olivier) (fig. 4)

Cryptocephalus equestris Olivier, 1808: 804, pl. 5, fig. 70

After study of Olivier’s original description and figure, we believe this name is correctly applied to an uncommon and little-known *Griburius* species of the southeastern United States and Texas. *Griburius larvatus* Newman, 1840: 250 is a similarly colored species that is common in Florida. Another, yet undetermined *Griburius* species which is similar in appearance is common in southern Texas and reaches eastward to Louisiana. Olivier’s limited description applies fairly well to all three species. We have seen specimens of all three species in various collections identified as *G. equestris*.

Our basis for assigning Olivier’s name is the dorsal color pattern and the color of the abdomen. His illustration depicts a yellow *Griburius* beetle with two round, black maculae on each elytron, the anterior-most being isolated and well-separated from the anterior elytral margin. The abdomen is described as black with the sides marked with yellow and with a black median spot. We interpret the latter as a black pygidial spot. The scale line given with Olivier’s figure is approximately 4.5 mm in length.

Several specimens we assign to *G. equestris* have the discal elytral maculae absent, and one from Georgia has four weakly developed discal maculae. Of the specimens from Texas, five specimens have the four maculae on the elytral disc complete and well developed (fig. 4), and two specimens have only the anterior discal maculae. When developed, the anterior discal maculae are well separated from the anterior elytral margin. Both the elytral and pronotal maculae are round or nearly round in shape. The elytral suture is entirely pale. Both pronotal and elytral maculation of these heavily-marked specimens match the color pattern shown in Olivier’s figure. All of our specimens have black abdomens with yellow marginal spots and their pygidia are yellow with a large black spot (fig. 4). Our specimens are smaller than Olivier’s scale bar, ranging from 3.2 (the smallest male) to 3.76 mm (the largest female).

The specimens we assign to *G. larvatus* (over 100 examined) have the elytral pattern variably developed, ranging from nearly absent to heavily marked. The anterior discal spot of the elytra is basal, nearly touching the leading margin of the elytron (fig. 5). Frequently in heavily marked specimens there is a weak to strongly developed median elytral macula which may be narrowly joined to the discal maculae. The elytral and pronotal maculae are somewhat angular in shape, and the suture is narrowly black in most specimens. The abdomen is yellow with a median, variably sized, dark macula. The pygidium is always entirely pale. Our specimens of *G. larvatus* range from 4.32 (smallest male) to 5.6 mm (largest female).

Despite the apparent discrepancy in size, we feel the evidence best supports the assignment of Olivier’s name to the little-known uncommon species of the southeastern United States and Texas. Newman’s name is available for the common Floridian species. Jacoby (1889) identified a small, similarly marked species from Guatemala as *G. equestris*. We have examined specimens from Chiapas, Mexico, which may be the same species as Jacoby’s specimen. Our Mexican specimens are yet another similarly marked species, different from either *G. equestris* or *G. larvatus*. We consider Jacoby’s Guatemalan record for *G. equestris* to be in error. Other records for *G. equestris* should be confirmed.

Confirmed records for *G. equestris*: Florida:

18, 10-IV-1989 [1 FSCA]. GEORGIA: Johnson Co., 1 mi. E Kite, IV-7-1977, on Quercus laevis [1 EGRC].

Griburius montezuma (Suffrian) (fig. 6)
Scolochrus montezuma Suffrian, 1852: 116
Pachybrachis hybridus: Riley and Enns, 1979: 58 (misidentification)

Griburius montezuma is a species of the southwestern United States and Mexico extending east as far as south Texas and Kansas. There exists a color form of this species where the ivory-white elytral markings are absent or nearly so, being reduced to a very narrow strip along the lower anterior portion of the elytral margin. From above, the elytra of these specimens appear to be entirely black. This dark form also has the pronotum almost entirely red, whereas the normal form has a large part of the anterior pronotal disc black and the extreme anterior edge creamy white. The dark form is found in the eastern-most part of the species’ range (from eastern Texas to Missouri and Florida). This color form and its eastern occurrence, neither formerly recorded in the literature, have resulted in the previous misidentification of this species.

Records of dark color form of G. montezuma:
ARKANSAS: Benton Co., Illinois River at Osage Creek, V-16-1972, dry ice baited sticky trap [1 TAMU].
FLORIDA: Alachua Co., Gainesville, III-29-IV-1989, Lindgren funnel with 95% ETOH bait [1 FSCA].

Cryptocephalus mutabilis Melsheimer

Cryptocephalus mutabilis Melsheimer, 1847: 172
Cryptocephalus reinhardi Sundman, 1965: 5 NEW SYNONYM

Sundman’s species described from Texas is nothing more than a color variant of the widespread C. mutabilis Melsheimer. The holotype of C. reinhardi [TAMU] has been examined.

Acknowledgements

We thank the curators of the collections cited above for making specimens available for study. Chris Reid made the initial identification of Trachymela sloanei from specimens from California, and Al Samuelson, Sean Strother, and Hauro Takizawa contributed significantly to the recognition of Demotina modesta. We thank Catherine Duckett, David Furth and Vilma Savini for sharing with us their concepts for certain Neotropical alticine genera.

Literature cited

Furth, D. G. and V. Savini. 1996. Checklist of the Alticinae of Central America, including Mexico (Coleoptera: Chrysomelidae). Insecta Mundi 10(1-4): 45-68.

Isono, M. 1990b. A revision of the genus Demotina (Coleoptera, Chrysomelidae) from Japan, the Ryukyu, Taiwan and Korea, II. Japanese Journal of Entomology 58(3): 541-554.

Say, T. 1824. Descriptions of coleopterous insects collected in the late expedition to the Rocky Mountains, performed by order of Mr. Calhoun, Secretary of War, under the command of Major Long. Journal of the Academy of Natural Sciences of Philadelphia 3(2): 238-282, 298-331, 403-462.

Schaeffer, C. F. A. 1919 (1920a). Synonymical and other notes on some species of the family Chrysomelidae and descriptions of new species. Jour-

