Behavioral aspects and predation of seeds of *Cardiospermum grandiflorum* Swartz (Sapindaceae) by *Cissoanthonomus tuberculipennis* Hustache (Coleoptera: Curculionidae)

Silvana Lampert, Marcoandre Savaris, Germano H. Rosado-Neto
Universidade Federal do Paraná, Departamento de Zoologia, Centro Politécnico
Jardim das Américas, Caixa Postal 19020, CEP 81531-980, Curitiba, PR, Brazil

Paulo Roberto Valle da Silva Pereira
Embrapa Trigo, Laboratório de Entomologia
Caixa Postal 451, CEP 99001-970, Passo Fundo, RS, Brazil

Date of Issue: October 11, 2013
Silvana Lampert, Marcoandre Savaris, Germano H. Rosado-Neto, and Paulo Roberto Valle da Silva Pereira
Behavioral aspects and predation of seeds of *Cardiospermum grandiflorum* Swartz (Sapindaceae) by *Cissoanthonomus tuberculipennis* Hustache (Coleoptera: Curculionidae)
Insecta Mundi 0320: 1-4

ZooBank Registered: urn:lsid:zoobank.org:pub:0FC435A5-1F63-4083-A45D-51F1D54715FA

Published in 2013 by
Center for Systematic Entomology, Inc.
P. O. Box 141874
Gainesville, FL 32614-1874 USA
http://www.centerforsystematicentomology.org/

Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non-marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history. *Insecta Mundi* will not consider works in the applied sciences (i.e. medical entomology, pest control research, etc.), and no longer publishes book reviews or editorials. *Insecta Mundi* publishes original research or discoveries in an inexpensive and timely manner, distributing them free via open access on the internet on the date of publication.

Insecta Mundi is referenced or abstracted by several sources including the Zoological Record, CAB Abstracts, etc. *Insecta Mundi* is published irregularly throughout the year, with completed manuscripts assigned an individual number. Manuscripts must be peer reviewed prior to submission, after which they are reviewed by the editorial board to ensure quality. One author of each submitted manuscript must be a current member of the Center for Systematic Entomology. Manuscript preparation guidelines are available at the CSE website.

Managing editor: Paul Skelley, e-mail: insectamundi@gmail.com
Production editor: Paul Skelley, Michael C. Thomas, Brian Armitage, Ian Stocks
Editorial board: J. H. Frank, M. J. Paulsen
Subject editors: G.B. Edwards, J. Eger, A. Rasmussen, G. Steck, Ian Stocks, A. Van Pelt, J. Zaspel
Spanish editors: Julieta Brambila, Ángelico Asenjo

Printed copies (ISSN 0749-6737) annually deposited in libraries:
CSIRO, Canberra, ACT, Australia
Museu de Zoologia, São Paulo, Brazil
Agriculture and Agrifood Canada, Ottawa, ON, Canada
The Natural History Museum, London, Great Britain
Muzeum i Instytut Zoologii PAN, Warsaw, Poland
National Taiwan University, Taipei, Taiwan
California Academy of Sciences, San Francisco, CA, USA
Florida Department of Agriculture and Consumer Services, Gainesville, FL, USA
Field Museum of Natural History, Chicago, IL, USA
National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
Zoological Institute of Russian Academy of Sciences, Saint-Petersburg, Russia

Electronic copies (On-Line ISSN 1942-1354, CDROM ISSN 1942-1362) in PDF format:
Printed CD or DVD mailed to all members at end of year. Archived digitally by Portico.
Florida Virtual Campus: http://purl.fcla.edu/fcla/insectamundi
University of Nebraska-Lincoln, Digital Commons: http://digitalcommons.unl.edu/insectamundi/
Goethe-Universität, Frankfurt am Main: http://edocs.ub.uni-frankfurt.de/volltexte/2010/14363/

Author instructions available on the Insecta Mundi page at:
http://www.centerforsystematicentomology.org/insectamundi/

Copyright held by the author(s). This is an open access article distributed under the terms of the Creative Commons, Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. http://creativecommons.org/licenses/by-nc/3.0/
Behavioral aspects and predation of seeds of *Cardiospermum grandiflorum* Swartz (Sapindaceae) by *Cissoanthonomus tuberculipennis* Hustache (Coleoptera: Curculionidae)

Silvana Lampert, Marcoandre Savaris, Germano H. Rosado-Neto
Universidade Federal do Paraná, Departamento de Zoologia, Centro Politécnico
Jardim das Américas, Caixa Postal 19020, CEP 81531-980, Curitiba, PR, Brazil.
sil.lampert@yahoo.com.br

Paulo Roberto Valle da Silva Pereira
Embrapa Trigo, Laboratório de Entomologia
Caixa Postal 451, CEP 99001-970, Passo Fundo, RS, Brazil
paulo.pereira@embrapa.br

Abstract. For the first time in Brazil, the weevil *Cissoanthonomus tuberculipennis* Hustache, 1939 (Coleoptera: Curculionidae) are reported preying on seeds of *Cardiospermum grandiflorum* Swartz (Sapindaceae). Observations are presented on oviposition and larval behavior, pupation site, and adult emergence. Photos of host plant, egg, larva, pupa and adult are provided.

Key words. weevil, balloon vine, host plants, immature, Brazil

Introduction

The balloon vine, *Cardiospermum grandiflorum* Swartz (Sapindaceae), is native to and widely distributed in tropical areas of Central and South America from southern Mexico to Argentina and Brazil (Reitz 1980; Carroll et al. 2005; McKay et al. 2010; Simelane et al. 2011), and also occurs in Australia, Asia, and Africa (Reitz 1980; Ferrucci 1991; McKay et al. 2010). In Brazil, balloon vine is found in the states of Pará, Mato Grosso, Minas Gerais, Rio de Janeiro, São Paulo, Santa Catarina, and Rio Grande do Sul, where it is known by the following common names: cipó-timbó-miúdo, balãozinho, chumbinho, ensacadinha, and erva-de-vaqueiro (Reitz 1980; Pereira et al. 2010).

Cardiospermum grandiflorum was introduced as an ornamental garden creeper in Australia (Carroll et al. 2005) and South Africa (Henderson 2001; Olckers 2004), where it has become invasive, suppressing native species (Henderson 2001; Simelane et al. 2011) and causing ecological and economic problems (Martin 2003). The adaptability and invasive capacity of *C. grandiflorum* in regions where it has been introduced represent an increasingly severe threat to biodiversity (Simelane et al. 2011). Biological control is considered the most feasible option for containing the invasion of *C. grandiflorum* in regions where it has been introduced.

The aims of this study were to identify a species of insect that preys on seeds of *C. grandiflorum*, to quantify the percentage of damaged fruit, and to characterize the behavior of adults and larvae in the fruits and seeds.

Materials and methods

The experiment was conducted in Mata Atlântica Biome, Brazil, in deciduous forest on the shores of the Uruguay River, in the municipality of Erval Grande, northern Rio Grande do Sul state (27°16’35.74”S, 52°40’43.59”W, 266 masl). According to the Köppen classification system, climate in the region is humid subtropical (Cfa), with well-distributed rainfall during the year (Rio Grande do Sul 1994). Average annual rainfall is approximately 1954 mm and average minimum and maximum temperatures during the year are approximately 10.1°C and 19°C, respectively.

About 303 fruits were collected at random from five plants of *C. grandiflorum* in August 2009. These fruits were transported to the EMBRAPA entomology laboratory in Passo Fundo, Rio Grande do Sul state, and 253 fruits placed individually in plastic containers with sterilized sand in the bottom and closed with voile fabric. The remaining fruits, in different stages of development, were carefully examined...
to verify the presence of immature forms, the location of oviposition sites, the location and behavior of the larvae and pupae, and adult emergence.

The plastic containers with the fruits were maintained in the laboratory, in a well-ventilated area and at ambient temperature and relative humidity. Fruits were monitored daily to check for the emergence of adults, which was quantified, and the percentage of damaged seeds was calculated as well.

Results and Discussion

The weevil specimens found preying on *C. grandiflorum* seeds were identified by Rosado-Neto as *Cissoanthonomus tuberculipennis* Hustache, 1939 (Curculionidae: Curculioninae: Anthonomini), and this is the first record of the species for Brazil. The weevil has been recorded from Bolivia and Argentina.

![Figure 1. Cissoanthonomus tuberculipennis. (a) Developing fruits, with oviposition hole indicated by arrow. (b) Egg. Photos by Marcoandre Savaris.](image1)

![Figure 2. Cissoanthonomus tuberculipennis. (a) Larva. (b) Damaged and healthy seeds. Photos by Paulo Roberto Valle da Silva Pereira.](image2)
Behavior of *Cissoanthonomus tuberculipennis* previously (Clark 2006; McKay et al. 2010; Simelane et al. 2011). Five voucher specimens were deposited in the Pe. Jesus S. Moure Entomology Collection of the Zoology Department at the Federal University of Paraná (DZUP), in Curitiba, Brazil.

An association between *C. tuberculipennis* and *C. grandiflorum* has previously been reported for Misiones province, Argentina (McKay et al. 2010; Simelane et al. 2011), along with 17 other phytophagous species of insects (McKay et al. 2010). The association of *C. tuberculipennis* with *C. grandiflorum* in Brazil corroborates results of Clark (2006), Clark et al. (2007), McKay et al. (2010), and Simelane et al. (2011), who reported *C. grandiflorum* as the only known host plant for *C. tuberculipennis*, which is considered monophagous and specific to this vine.

During oviposition, the female of *C. tuberculipennis* perforates the developing fruit with the rostrum, usually near the apex (Fig. 1a), where she places 1 to 3 small, hyaline eggs (Fig. 1b). This same behavior was observed in fruits (± 1 cm) in Argentina (McKay et al. 2010; Simelane et al. 2011).

The white-colored larvae (Fig. 2a) were observed feeding on seeds inside the capsules that splits the fruit. The percentage of damaged fruit was 64.3%, with an average of 1.5 insects/fruit. A single larva can move from one fruit to another and feed on more than one seed, and thus all seeds may be destroyed and not viable. We found 1-3 larvae inside each fruit, and feeding waste was observed around the damaged seeds (Fig. 2b). The movement of the larva inside the fruit in search of a new seed occurs with the larva’s dorsal region turned to the inner walls of the capsule that splits it. In a study in Argentina, Simelane et al. (2011) reported 1-2 larvae of *C. tuberculipennis* per fruit, which were capable of destroying all seeds. Similar behavior was also recorded by McKay et al. (2010).

The pupae are white-cream to greenish, approximately 4 mm long, and found attached to the inner wall of the capsules of already developed fruits (Fig. 3a). Similar observations were reported by Simelane et al. (2011) in Misiones province, Argentina.

The adult (Fig. 3b) is approximately 5 mm long, with the body covered by light brown setae, darker in the apical half of the elytra. The head is deeply constricted behind the eyes, the anterior femora greatly enlarged, strong protuberances present on the dorsal middle of the elytra, and the elytral humeri acutely produced (Clark 1989, 2006). Adult emergence occurs inside the fruit while it is still on the plant or after it has fallen to the ground. After emergence, some individuals remain for some time inside the fruit before opening the outlet orifice, and may be dispersed together with the fruits. Adult emergence behavior corroborates the results obtained by Simelane et al. (2011) in Argentina.
In general, the results of this study are similar to those obtained by McKay et al. (2010) and Simelane et al. (2011) with specimens of *C. tuberculipennis* in Argentina. Based on our observations, we consider *C. tuberculipennis* a promising agent for biological control of *C. grandiflorum* in regions where the plant is native or exotic.

Acknowledgments

We thank Ms. Branca Maria Aimi Severo of the Zoobotânico Museum of the University of Passo Fundo for confirming the identification of *C. grandiflorum* and Dr. Nigel Pitman (Duke University) for suggestions on the manuscript. We thank Sergio Antonio Vanin and Roberta de Melo Valente for reviewing the manuscript.

Literature Cited

Received July 5, 2013; Accepted July 25, 2013.