0509

Parajulid millipede studies XI:
Initial assessment of the tribe Gosiulini (Diplopoda: Julida)

Rowland M. Shelley
Department of Entomology and Plant Pathology
University of Tennessee
2505 E J Chapman Dr.
Knoxville, TN 37996-4560 USA

Jamie M. Smith
425 Phelps Rd.
Franklinton, NC 27525 USA

Date of Issue: October 21, 2016
Rowland M. Shelley and Jamie M. Smith
Parajulid millipedes studies XI: Initial assessment of the tribe Gosiulini (Diplopoda: Julida)
Insecta Mundi 0509: 1–17

ZooBank Registered: urn:lsid:zoobank.org:pub:C8A2163D-6684-4F7F-9D51-9E6D4FC8F9A0

Published in 2016 by
Center for Systematic Entomology, Inc.
P. O. Box 141874
Gainesville, FL 32614-1874 USA
http://centerforsystematicentomology.org/

Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non-marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history. Insecta Mundi will not consider works in the applied sciences (i.e. medical entomology, pest control research, etc.), and no longer publishes book reviews or editorials. Insecta Mundi publishes original research or discoveries in an inexpensive and timely manner, distributing them free via open access on the internet on the date of publication.

Insecta Mundi is referenced or abstracted by several sources including the Zoological Record, CAB Abstracts, etc. Insecta Mundi is published irregularly throughout the year, with completed manuscripts assigned an individual number. Manuscripts must be peer reviewed prior to submission, after which they are reviewed by the editorial board to ensure quality. One author of each submitted manuscript must be a current member of the Center for Systematic Entomology.

Chief Editor: Paul E. Skelley, e-mail: insectamundi@gmail.com
Assistant Editor: David Plotkin, e-mail: insectamundi@gmail.com
Head Layout Editor: Eugenio H. Nearns
Editorial Board: J. H. Frank, M. J. Paulsen, Michael C. Thomas
Review Editors: Listed on the Insecta Mundi webpage

Manuscript Preparation Guidelines and Submission Requirements available on the Insecta Mundi webpage at: http://centerforsystematicentomology.org/insectamundi/

Printed copies (ISSN 0749-6737) annually deposited in libraries:
CSIRO, Canberra, ACT, Australia
Museu de Zoologia, São Paulo, Brazil
Agriculture and Agrifood Canada, Ottawa, ON, Canada
The Natural History Museum, London, UK
Muzeum i Instytut Zoologii PAN, Warsaw, Poland
National Taiwan University, Taipei, Taiwan
California Academy of Sciences, San Francisco, CA, USA
Florida Department of Agriculture and Consumer Services, Gainesville, FL, USA
Field Museum of Natural History, Chicago, IL, USA
National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
Zoological Institute of Russian Academy of Sciences, Saint-Petersburg, Russia

Electronic copies (Online ISSN 1942-1354, CDROM ISSN 1942-1362) in PDF format:
Printed CD or DVD mailed to all members at end of year. Archived digitally by Portico.
Florida Virtual Campus: http://purl.fcla.edu/fcla/insectamundi
University of Nebraska-Lincoln, Digital Commons: http://digitalcommons.unl.edu/insectamundi/
Goethe-Universität, Frankfurt am Main: http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hebis:30:3-135240

Copyright held by the author(s). This is an open access article distributed under the terms of the Creative Commons, Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. http://creativecommons.org/licenses/by-nc/3.0/

Layout Editor for this article: Eugenio H. Nearns
Parajulid millipede studies XI: Initial assessment of the tribe Gosiulini
(Diplopoda: Julida)

Rowland M. Shelley
Department of Entomology and Plant Pathology
University of Tennessee
2505 E J Chapman Dr.
Knoxville, TN 37996-4560 USA
rowland.shelley1@gmail.com

Jamie M. Smith
425 Phelps Rd.
Franklinton, NC 27525 USA
jmsmith10@aol.com

Abstract. The parajulid millipede tribe Gosiulini (Diplopoda: Julida) comprises two genera – Gosiulus Chamberlin, with three projections on the posterior gonopod and two species in the southcentral/southwestern United States (US) [Arizona, Colorado, New Mexico, and Texas], and monotypic Minutissimiulus Shelley, n. gen., with two projections, in Nuevo León, Mexico. Gosiulus conformatus Chamberlin occupies the plains/flatlands of Texas, while its congener inhabits high elevations to the west in all four US states. Both are anticipated in Mexico (Coahuila, Chihuahua, and Sonora), and G. conformatus is expected in southeastern Colorado, eastern New Mexico, and the Oklahoma panhandle. The eastern boundary of G. conformatus and the genus/tribe conforms to the western border of the Piney Woods biome in eastern Texas. As shown by the posterior gonopod drawing in the original description, Parajulus timpius Chamberlin, previously considered of "uncertain generic position or validity," is unquestionably the oldest name for the western species. Because of positional homology with "process 'C'" in Nesosessini, the last projection is accorded this name, which may also apply to the "prefemoral process" in Aniulini. Minutissimiulus biramus Shelley, n. sp., is proposed along with the following new subjective synonymies: Apacheiulus Loomis under Gosiulus; Ziniulus aethes and Z. medicolens, both by Chamberlin, and Z. ambiguus and Z. nati, both by Loomis, under G. conformatus; and A. pinalensis and A. guadelupensis, both by Loomis, under G. timpius, new combination. Ziniulus navajo Chamberlin becomes an objective synonym of P. timpius because its holotype is designated neotype of the latter. Minutissimiulus biramus Shelley is the first Mexican gosiuline and "mainland" Mexican parajulid not in the tribe Parajulini.

Key Words. Apacheiulus, Arizona, Colorado, Gosiulus, Minutissimiulus, New Mexico, Nuevo León, objective synonymy, Texas, Ziniulus.

Introduction

Referring to the necessary compromises and concessions, a United States (US) senator once stated, "Legislation is the art of the possible." So, we contend, is taxonomy, particularly when groups, like the millipede/diplopod family Parajulidae (order Julida), are diverse and speciose, essentially unknown, and actuarial life expectancies of the few researchers drop into single digits. In these circumstances, something is better than nothing, and the need to publish basic alpha-level knowledge to establish a foundation for future investigations supersedes that of producing perfect, all-inclusive tomes that some diplopodologists in the US and northern Europe demand. RMS and the late N. B. Causey (1910–1979) are the only persons in human history who have held in depth knowledge of this taxon, the dominant Nearctic diplopod family, a precarious situation that compels publication of some level of insight lest all knowledge become extinct with another student having to develop it de novo. This, in turn, is unlikely given economic factors, trends in modern biology, and emergency global crises like climate change. Restricted to the Nearctic and northern Neotropics excepting Karteroiulus niger Attems in east Asia, Parajulidae’s New World distribution is depicted by Shelley (2008, fig. 1), who updated maps by Hoffman (1969) and Enghoff (1993). In its predominant area, Parajulidae is either known or expected in the Alaskan panhandle, every county in each of the lower 48 states, all Canadian provinces bordering...
the latter, every state in Mexico possibly excepting those in the Yucatan Peninsula, and Guatemala, Belize, Honduras, and El Salvador. Since Julida is absent from South America and other indigenous Nearctic representatives – *Virgoiulus* Enghoff (Blaniulidae), three species of *Orinisobates* Lohmandeer (Nemasomatidae), *Oceanobates americanus* Enghoff (Okeanobatidae), and the families Aprosphylosomatidae, Chelojulidae, Paeromopodidae, Telsonemasomatidae, and Zosteractinidae – occur within *Parajulidae*’s range. Consequently, this is also the entire, indigenous, ordinal New World distribution (Shelley and Golovatch 2011, fig. 26).

RMS’ prior contributions on *Parajulidae* include a treatment of the Mexican/northern Central American tribe *Parajulini* (Shelley 2008), proposal of *Nesoressini* for a new genus and species in New Mexico (Shelley and Medrano 2006), and eight works on *Aniulini* (Shelley 2000a, b, 2001, 2002, 2004, 2007a, b; McAllister et al. 2009). A summary work on *Aniulini*, in progress for years, has been delayed because new forms continue to appear in preserved holdings. The alpha-level objective of the present contribution and future ones on *Ptyoiulini*, *Uroblaniulini*, *Bollmaniulini*, and other west-Nearctic tribes *sensu* Causey (1974) mandates abbreviated treatments focusing on gonopod structure, typification, nomenclature, male diagnostic anatomy, and distributions, to render these taxa available to the biological community. *Gosiulini* is undoubtedly a soundly based taxon, and we accept Causey’s (1974) higher *Parajulid* taxonomy, not being competent to alter it with so many unstudied tribes.

Materials and Methods

Missing data in locality listings were not provided on vial labels, and “MM, FF,” and/or “juvs.” indicate too many individuals to count. Repository acronyms are AMNH, American Museum of Natural History, New York, New York; FSCA, Florida State Collection of Arthropods, Gainesville; LACM, Los Angeles County Museum of Natural History, Los Angeles, California; MSB, Museum of Southwestern Biology, University of New Mexico, Albuquerque; NCSM, North Carolina State Museum of Natural Sciences, Raleigh; NMNH, National Museum of Natural History, Smithsonian Institution, Washington, DC; UCM, Museum of Natural History University of Colorado, Boulder; UTIC, University of Texas Insect Collection, Austin; VMNH, Virginia Museum of Natural History, Martinsville; WTAM, West Texas A & M University, Canyon.

Taxonomy

Order Julida Brandt 1833
Family Parajulidae Bollman 1893
Subfamily Parajulinae Bollman 1893
Tribe Gosiulini Causey 1974

Diagnosis. Small-bodied to minute *Parajulinae*, adult lengths ranging from 9–20 mm; epiproct short, barely overhanging and extending beyond paraproctal margins; 8th rings of males without sternal lobes. Anterior gonopod lateral syncoxal process long, extending beyond level of distal extremity of telopodite, apically rounded or uncinate. Posterior gonopod telopodite with either two (process “C”, solenomere) or three (these plus a prefemoral process) ventrally-directed, vertical projections; process “C” variable in length and configuration, arising (sub)basally from solenomere branch; solenomere filamentous, attenuated for most of length and appearing flagellate, curvilinear or sigmoid, extending ventrad well beyond distal extremities of other projections. Prostatic groove running along inner surface of solenomere for most of its length, opening apically.

Components. *Gosiulus* Chamberlin, 1940; *Minutissimiulus* Shelley, **new genus**.
Distribution. Occurring, east-west, from the western fringe of the Piney Woods biome in eastcentral Texas to the mountains of westcentral Arizona, ranging northward through the Texas Panhandle and the Front Ranges of the Rockies about 1/3 of the length of Colorado and southward to the Rio Grande and the Mexican border, continuing southward for most of the length of Nuevo León (Fig. 1, 13). Shelley and Medrano (2006) depicted the range of Gosiulini then known on a map of the “southern clade,” but it lacked Colorado, central Arizona, and Nuevo León; however, Causey (1974) had accurately characterized the area as “Arizona and Colorado southeast to northeastern Mexico.” Though never describing the genus or species, Causey had samples of *Minutissimiulus biramus*, now housed at the FSCA, and knew of the tribe’s occurrence in Nuevo León, the first of a primarily US parajulid taxon south of the Rio Grande and the first occurrence of a tribe other than Parajulini in “mainland” Mexico (Shelley 2008).

Remarks. We label process “C” as such because of positional homology with that projection in Nesoressini (Shelley and Medrano 2006), suggesting affinity between the tribes. Such a relationship is supported by their sympatric occurrence in both western New Mexico (Fig. 1) and likely also eastern Laramidia, Nesoressini occurring near the edge of the former Western Interior Seaway. As the structure in Aniulini that has been termed “prefemoral process” in all prior publications also arises at this position, it also seems homologous and properly labeled as process “C”, with the prefemoral process being absent in this tribe.

Key to Genera and Species of Gosiulini

1. Posterior gonopod telopodite comprising two branches – process “C” and solenomere; Nuevo León, Mexico ... *Minutissimiulus biramus* Shelley, n. gen., n. sp.
 – Posterior gonopod telopodite comprising three branches – prefemoral process, process “C”, and solenomere .. (*Gosiulus* Chamberlin, 1940) 2

2. Anterior gonopod lateral sternal process relatively narrow, apically uncinate; caudal margin of posterior gonopod prefemoral process with prominent spine at 1/3 length, with or without smaller, more distal spines; process “C” variably configured but relatively short and upright, subparallel to basal part of solenomere; panhandle and plains of Texas west of the Piney Woods biome ... *G. conformatus* Chamberlin, 1940
 – Anterior gonopod lateral sternal process broad, apically rounded; posterior gonopod prefemoral process unspined, process “C” long, blade-like, curling around and enveloping dorsal, caudal, and ventral surfaces of solenomere; mountains of western Texas to westcentral Arizona and southcentral Colorado ... *G. timpius* (Chamberlin, 1912)

Genus *Gosiulus* Chamberlin, 1940

Type-species. Of *Gosiulus*, *G. conformatus* Chamberlin, 1940, by original designation; of *Ziniulus*, *Z. aethes* Chamberlin, 1940, by original designation; of *Apacheiulus*, *A. pinalensis* Loomis, 1968, by original designation.

Diagnosis. Moderate-sized to large-bodied Gosiulini. Anterior gonopods with or without detectable coxal lobes; telopodite roughly 1/3 as long as lateral syncoxal process; latter leaning mediad, with or without rounded basal lobe. Posterior gonopod with three ventrally directed projections; prefemoral process (anteriormost branch) long, usually blade-like for most of length, (sub)uncinate apically; process “C” either relatively short, extending distad in varying configurations subparallel to basal part of solenomere or twisted and blade-like, curling around and enveloping dorsal, caudal, and ventral surfaces
of solenomere near midlength; latter with basal lobe on outer (caudal) surface, tapering and extending distad, usually sigmoidally, well beyond apices of other projections.

Species. Two that are probably parapatric, with *G. timpius* occurring in mountains and foothills of the western 2/3 of the tribal/generic ranges and *G. conformatus* inhabiting the plains, Edwards Plateau, and flatlands of Texas. The former occupies parts of all four US states – Arizona, Colorado, New Mexico, and Texas - while *G. conformatus* is known only from Texas but projected for eastern New Mexico, southeastern Colorado, and the Oklahoma panhandle.

Distribution. Known only from the tribal range in the US, but the proximity of samples in Arizona, New Mexico, and Texas to the Mexican border suggests occurrence, and eventual discovery, of *G. timpius* in northern Sonora and Chihuahua and *G. conformatus* in Coahuila (red and black arrows in fig. 13). The latter is also projected for adjoining US states. The eastern distributional limit conforms to the western limit of the Piney Woods biome in eastern Texas.

Remarks. Without question, *Parajulus timpius* Chamberlin, 1912, most recently considered of “uncertain generic position or validity” (Hoffman 1999), is the oldest and correct name for the western/mountain species. Chamberlin’s illustration of the posterior gonopod (1912, pl. 11, fig. 9) clearly shows process “C” curling partly around the solenomere as in Fig. 17–19 herein. This specific name holds 31 years of priority over *Z. navajo*.

Gosiulus conformatus Chamberlin, 1940

Fig. 2–12

Ziniulus ambiguus Loomis 1959: 163, fig. 20–23. **New subjective synonymy.**

Ziniulus nati Loomis 1963: 122, fig. 20–23. **New subjective synonymy.**

Type specimens. Male Lectotype (NMNH) collected by S. and D. Mulaik on an unknown date in December 1939 south of Three Rivers, Live Oak County (Co.), Texas. Paralectotypes (NMNH), all collected on unknown dates in December 1939 by S. and D. Mulaik, as follows: M, 3F from south of Brady, McCulloch Co.; MM, FF, juvs. from Big Spring, Howard Co.; and M, 3F from 27.2 km (17.0 mi) N Alice, Jim Wells (not Brooks) Co.

Chamberlin (1940) did not specifically designate a holotype or paratypes in the original description but merely recorded *G. conformatus* from four Texas localities: south of Three Rivers, Live Oak Co.; south of Brady, McCulloch Co.; 27.2 km (17.0 mi) north of Alice, Jim Wells Co., erroneously placed in Brooks Co.; and Big Spring, Howard Co. In the vials, however, he labeled the male from Live Oak Co., the only individual in the sample, as the holotype and the males, females, and juveniles in the Howard and McCulloch Co. samples, as paratypes, all meaningless without publication. Though not labeled, the specimens from Jim Wells Co. were mentioned simultaneously, so we consider them to be additional syntypes. These samples are from two regions of Texas, McCulloch and Howard Cos. being in the west-center some 563.2 km (352.0 mi) NW of Live Oak Co. in the southeast. Hoffman (1999) erroneously
reported the male from Live Oak Co. as the holotype, so for consistency, we designate it lectotype with the material from McCulloch, Howard, and Jim Wells Cos. becoming paralectotypes.

Diagnosis. Anterior gonopod with or without short, inconspicuous coxal lobes, lateral syncoxal process apically uncinate; posterior gonopod prefemoral process with variable acuminate spine arising from caudal surface around 1/3–2/3 length; process “C” moderately long, erect, extending directly ventrad for 1/3 to 1/2 of solenomere length, configuration variable.

Descriptive notes. Male length ranging from around 20.0–32.4 mm, maximum width 1.3–3.4 mm; 47–57 rings including collum and epiproct. Ventral margin of mandibular stipes with broad, deep, semilunar indentation. Dorsum smooth and glossy with scattered metazonital setae especially on anterior rings, caudal rings glabrous. Paraproctal rims moderately thickened; hypoproct minute. Sterna not modified.

1st legs moderately enlarged and forcipulate, tarsi overlapping in situ. Telopodites of both pairs of gonopods projecting through aperture in situ; anterior gonopod telopodites and lateral syncoxal processes angling caudad and overhanging 8th sternum; posterior gonopods upright, telopodites extending directly ventrad between anterior gonopod structures. Anterior gonopods (Fig. 2–5) with or without short coxal lobes; telopodites leaning mediad and extending ventrad for 2/3 of lengths of lateral syncoxal processes; latter variably uncinate apically. Posterior gonopod prefemoral process (Fig. 6–12) with variable spine on caudal surface around 1/3–2/3 length, with or without small additional spines (Fig. 8), usually distally uncinate/falcate but occasionally rounded and swollen; process “C” (Fig. 6, 9–12) extending ventrad subparallel to solenomere for nearly half its length, configuration varying from filiform (Fig. 6, 12) to boletoid (Fig. 10) and subclavate, solenomere usually variably sigmoid (Fig. 6, 10–12), occasionally curvilinear (Fig. 9), extending substantially farther ventrad than other branches to become ventralmost telopodital projection, tapering smoothly and continuously to finely acuminate tip.

Gonopodal variation. Other than slight differences in their angles, the relative lengths of the telopodites and lateral syncoxal processes, and the degree of the apical uncination, the anterior gonopods are stable and constant. Given the consistent in situ arrangement of the two gonopod pairs, the anteriors apparently function as guides to position the posterior ones and/or spermatophores for mating. As guides, the actual structural configuration of the anterior gonopods seems insignificant as long as the posterior ones are properly aligned. This apparent function, as guides for inseminating the female cyphopods, has been postulated for the aniuline Aniulus garius (Chamberlin) [=A. bollmani Causey] (Matthews and Bultman 1993, McAllister et al. 2009). We believe it applies broadly to parajulids and even “bi-gonopodal” helminthomorph diplopods, particularly representatives of the subterclass Colobognatha, where the posterior gonopods typically project anteriad between the anterior ones in situ.

The posterior gonopods, the true reproductive structures, are highly variable. While those of a gonopod pair are virtually indistinguishable, no one pair is structurally identical to another as all three projections vary. Those of the holotype of Z. aethes, from Austin, Travis Co. (Fig. 9), are “scrunched together” in less physical space than in other males. Consequently, the branches are in contact, lie over and under each other, and force each other out of position; this is also the only male we examined with a curvilinear, rather than sigmoid, solenomere. We attribute this configuration to distortion caused by the tight, more closely appressed condition of the three projections.

The relative lengths of the branches vary in practically every posterior gonopod pair, but the solenomere is always substantially longer. Its width and degree of sigmoid curvature vary, but the most notable variation is the size of the basal swelling near the origin of process “C”; the male from LaSalle Co. (Fig. 11) lacks this swelling. The solenomere is the least variable projection, but process “C” is highly so. Its length, width, and configuration vary, and it may be apically acuminate or boletoid and sublinear or curve gently anteriad distally.

The prefemoral process consistently displays the diagnostic caudal spine, but its length and position on the process vary (Fig. 6, 9, 10–12, sp) as does practically every other aspect of the projection including overall length. One to three additional short spines may arise distad but proximal to the distal curve/bend of the branch. The distal curve/hook is directed anteriad, opposite to the spined margin, and may be broad or narrow with variable apices; it is an abrupt, sharp bend in the male from Lubbock Co. (Fig. 12).
Chamberlin authored all five available names, two in *Ziniulus (aethes and nati)* and three in *Gosiulus (conformatus, ambiguis, and medicolens)*. The posterior gonopods of the type of each differ, so he apparently concluded that each represented a separate species. Assessing these five variants in the context of all lowland Texas gosiulines reveals them to be variants of one highly variable species for which *conformatus* is the oldest name. By Chamberlin's standards, we would have as many nominal species as samples with males, but clearly this is not the case. The only name that plausibly could represent a true species is *aethes* because of its closely appressed posterior gonopod branches and the curvilinear solenomere, but we interpret these as anomalies exhibited by this individual. More sampling in Travis Co. will reveal whether sufficient individuals show this condition to warrant taxonomic recognition, so we assign it to *conformatus*. An example of a localized milliped species that is surrounded by a widespread congener is *Xystocheir prolitorama* Shelley (Polydesmida: Xystodesmidae), occurring inside the range of *X. d. dissecta* (Wood) in northern California (Shelley 1996).

Ecology. *Gosiulus conformatus* inhabits a variety of low elevation, flatland biotopes and seemingly may be expected virtually any place within its known and projected areas (Fig. 13). Published habitat notations include “bottom of 90’ entrance drop, apparently washed into the cave” and “bottom of sink entrance” (both by Reddell 1965) and “leaf litter on a ledge 20 feet below the entrance” (Reddell 1970). Comments on labels with newly examined material include “on the ground under rocks,” “cotton field,” “berlese of leaf litter,” “sandy soil, logs, pipes,” “under bags put on concrete floor” (inside an office building), and “slight preference for clay soil.”

Distribution (Fig. 13). Known only from lowland regions of Texas, extending from the western periphery of the Piney Woods biome in eastcentral Texas, approximately 280.0 km (175.0 mi) west of the Louisiana border, west- and northward to the eastern Trans Pecos and High Plains biomes, respectively, and southward to approximately 160.0 km (100.0 mi) north of the Rio Grande in Jim Wells Co. *Gosiulus conformatus* has not been taken south of the Rio Grande in Mexico (Tamaulipas, Nuevo León, or Coahuila states), but it occurs approximately 22.4 km (14.0 mi) from the River in Webb Co. (Loomis 1963) and up to the watercourse itself in Maverick and Val Verde Cos.; it should be expected directly across the Rio Grande in Coahuila (Fig. 13, short black arrows) and perhaps even farther south. As the lowlands of westcentral Texas and the Panhandle spread west- and northward into eastern New Mexico, southeastern Colorado, and the Oklahoma Panhandle (Fig. 13, long black arrows); it also plausibly occurs north of the Red River in southern Oklahoma (Fig. 13) and conceivably even western Kansas. We doubt that the milliped inhabits southernmost Texas and the well-sampled Rio Grande Valley because it seemingly would have been found by now.

Material examined. Texas: *Bandera Co.,* Bandera, Shaw Ranch, M, F, 2 February 1962, G. Marion (FSCA). *Bee Co.,* Beeville, M, 10 October 1895, E. Swain (NMNH). *Bell Co.,* 19.2 km (12.0 mi) N Temple, 2M, 3 November 1927, O. F. Cook (FSCA); and SW Belton, 3M, January 1931, O. F. Cook (FSCA). *Bexar*

SE Sanderson, 2M, F, 30 October 1943, W. S. Ross (FSCA).

135, along Onion Cr., M, 23 January 1976, J. Richter (UTIC); and 2.8 km (1.75 mi) S Longhorn Dam, 25.0 mi) SW Abilene, MM, FF, juvs., 1 March 1944, H. S. Dybas (FSCA).

27 December 1965, T. Stewart (FSCA); and 28.8 km (18 mi) N San Antonio, 2 January 1943, W. S. Ross (FSCA).

Remarks. The holotype of the synonym, *Ziniulus medicolens*, is an unusually large-bodied gosiulinine. Comparing Fig. 1 and 13 reveals that the entire distribution of *G. conformatus* was submerged at the height of the Western Interior Seaway in the Cretaceous/Paleocene periods (65–100 mya) while the western part of the range of *G. timpius* (El Paso, western New Mexico, and Arizona) was land in eastern Laramidia as was at least most of the distribution of Nesoressini. Consequently, *G. conformatus* appears substantially younger than its more anatomically stable congener, and its greater variability may reflect insufficient time to stabilize.

Gosiulus timpius (Chamberlin 1912), new combination

Fig. 14–19.

Paraiulus timpius Chamberlin 1912: 165, pl. 11, fig. 8–9.

Type specimens. The male and female syntypes (Chamberlin 1912, Hoffman 1999) are lost. They were collected by T. D. A. Cockerell on an unknown date prior to 1912 at Los (misspelled as “Las”) Valles, New Mexico, an unknown location that modern computer programs place in San Miguel Co., ca. 16.0 km (10.0 mi) SE of Las Vegas (elevation 5,900′), in the Gallinas River Valley near the community of San Augustin (35°27′13.77″N, 105°09′3.39″W). The habitat was probably the predominant pinyon pine-juniper grassland. As no new male-containing samples are available from this county, we exercise the right of first reviser and designate the individuals in the type-sample of *Z. navajo*, the second oldest name (omitted by Hoffman (1999)), as the neo-/paraneotypes of *P. timpius*; *Z. navajo* thus becomes an objective synonym of the latter. Male neotype and one M and one F paraneatypes (NMNH, the holotype, paratype, and allotype, respectively, of *Z. navajo*) collected by S. and D. Mulaik, 31 May 1941, 9.6 km (6.0 mi) south of Mountainair, Torrance Co., New Mexico, some 154.0 km (96.0 mi) southwest of Los Valles/San Augustin. We do not so designate the two female paratypes of *Z. navajo* from other New Mexico localities - south of Ft. Stanton, Lincoln Co., and Lamy (=Santa Fe Station), Santa Fe Co.

Diagnosis. Anterior gonopod coxal lobe long, distinct; lateral syncoxal process apically rounded. Posterior gonopod prefemoral process unspined; process “C” long, blade-like, curling around and enveloping dorsal, caudal, and ventral surfaces of solenomere near midlength.

Descriptive notes. Body dimensions, somatic features, and gonopods *in situ* agreeing closely with those of *G. conformatus*. Anterior gonopod (Fig. 14–16) with relatively long coxal lobe; telopodite nearly upright, lateral syncoxal process leaning strongly mediad, apically rounded with strong basal lobe on outer surface. Posterior gonopod prefemoral process without spines, long and blade-like for most of length, narrowing distad and apically uncinate; process “C” long, twisted, and blade-like, curling over and enveloping dorsal, caudal, and ventral surfaces of solenomere around midlength; basal bulge of solenomere small, inconspicuous, stem angling anterioventrad, curvilinear or sigmoid.

Variation. Body size and somatic features vary as in *G. conformatus*, but the anterior is the more variable gonopod. It possesses a distinct coxal lobe that ranges from short and rounded to moderately long and dactylyiform, and the basal lobe on the lateral syncoxal process varies from short, globular, and broadly rounded to long, narrow, and subdactylyiform. The posterior gonopod is more anatomically stable than that of the type species, the most variable aspects being the relative length of the prefemoral process,
the size of the apical hook, and the sigmoid or curvilinear configuration of the solenomere. Process “C” is constant, but the degree of overhang of the solenomere varies from complete and extending beyond its inner margin to half of its width.

Ecology. The mountain/upland species, *G. timpius* occurs in all four US states occupied by the tribe/genus. Habitat notations on sample labels include “below igneous outcropping,” “limestone cliff,” “in west draining canyon,” “sifting pinyon litter in a Pinyon Pine/Juniper association with a little yellow pine,” “under rocks in pinyon pine/juniper zone,” “sweeping fir at night,” “cantrap in pinyon pine, juniper, and *Nolina*,” “litter beneath *Dasylirion wheelert*” (Desert Spoon or Sotol), and “under rocks and leaves in ravine.”

Distribution (Fig. 13). The distribution of *G. timpius* extends from the mountains of west Texas (Guadalupe, Davis, Chisos, and Franklin) through those in central New Mexico (Organ, Sacramento, Capitan, Sierra Blanca, Manzano, Sandia, and Sangre de Cristo) and the Front Ranges of the Rockies to one-third of the north-south dimension of Colorado and the mountains in westcentral Arizona. The southernmost localities are about 16.0 km (10.0 mi) from the International Border in Cochise and Pima Cos., Arizona, Luna Co., New Mexico, and El Paso and Brewster Cos., Texas, so we anticipate discovery in northern Sonora and Chihuahua, Mexico. The Texas sites are separated from Mexico by the Rio Grande, but those in New Mexico and Arizona are only separated by a line in the sand. The southernmost record, in Brewster Co., Texas, is based on females and less certain than those vouchered by males, so it is denoted by the red question mark.

Colorado: *Fremont Co.*, 16.0 km (10.0 mi) N Cañon City, along Oil Cr., 6M, 6F, 23 September 1961, B. Vogel (UCM, NCSM, UTIC); and Royal Gorge Rim, 5M, FF, juvs., 16 September 1940, S. and D. Mulaik (NMNH).

Remarks. The correct spelling of the mountain range and national park is “Guadalupe,” but Loomis (1975) spelled the specific name as “guadelupensis” in both the original description and figure caption; this (mis)spelling was repeated by Hoffman (1999). As the name falls in synonymy under *timpius*, emendation is moot. In the descriptive and subsequent accounts (Loomis 1975, Hoffman 1999), Bush Mtn. is reported as being in the Hudspeth Co. section of Guadalupe Mountains National Park, but it is actually in the Culberson Co. sector.

The posterior gonopods of the holotype of *A. pinalensis* are lost. They were not in the vial with the anterior pair and the fragmented body, nor was the female paratype that was collected with the holotype.

Minutissimiulus Shelley, new genus

Type- and only component species. *M. biramus* Shelley, new species.

Diagnosis. Minute to small-bodied Gosiulini. Posterior gonopod with two projections, prefemoral process absent; process “C” short, closely appressed to solenomere and extending for around half its length; latter curvilinear for most of length, bending abruptly subapically, tip short, simple, and acuminate, overhanging process “C.”

Distribution (Fig. 13). Nuevo León, Mexico.

Etymology. The generic name references the minute size of the lone component species.

Remarks. As a representative of Gosiulini, *Minutissimiulus* is the first parajulid genus recorded from “mainland” Mexico in a tribe other than Parajulini.
Minutissimiulus biramus Shelley, new species

Fig. 20–21.

Type specimens. 3 M and 6 F syntypes (VMNH) collected by G. E. Ball and D. R. Whitehead, 18 October 1965, 19.2 km (12.0 mi) N Linares, 1,200’, Nuevo León, Mexico.

Diagnosis. With the characters of the genus.

Descriptive notes. Male syntype 15.1 mm long, maximal width 1.1 mm, 46 rings including epiproct; female syntype 13.7 mm long, maximal width 1.1 mm, 45 rings. Anterior gonopod (Fig. 20) coxal lobe minute, telopodite and lateral syncoxal process subupright, former 2/3 as long as latter; latter apically uncinate. Posterior gonopod with two ventrally directed projections; prefemoral process absent; process “C” short, closely appressed to solenomere, expanding into ovoid bulge at midlength, narrowing abruptly thereafter with tip overlapping solenomere; latter curvilinear, bending abruptly subapically, tip short, overhanging process “C”.

Variation. The midlength swelling of process “C” varies, and the projection’s length ranges from 1/2 to 2/3 of that of the solenomere; its tip may slightly overlap the latter or extend beyond its outer margin. The solenomere stem is slightly bisinuate in males from west of Linares.

Ecology. Unknown. Habitat notes are not provided with any sample.

Distribution (Fig. 13). Same as that of the genus, the entire known range in Mexico. In addition to the types, the following specimens were examined:

Mexico, *Nuevo León*, 32.0 km (20.0 mi) W Linares, 3M, F, 2 juvs., September 1956, S. and D. Mulaik (AMNH); E of Cadereyta Jiménez, M, 4F, 3 January 1950, S. Mulaik (NMNH); 17.6 km (11.0 mi) S Monterrey, M, F, juv., 5 January 1950, S. Mulaik, R. V. Chamberlin (NMNH); 3.2 km (2.0 mi) S Bustamente, M, 31 December 1963, W. Russell (FSCA); 8.0, 6.4, and 4.8 km (5.0, 4.0, and 3.0 mi) W Bustamente, MM, FF, 9 September 1946, 26 September and 30 December 1964, W. S. Ross, D. McKenzie. J. R. Reddell (FSCA); 2.1 km (1.3 mi) E Iturbide, 4,800’, M, F, 18 October 1965, G. E. Ball, D. R. Whitehead (VMNH); along route 85, 52.6 km (32.9 mi) N Montemoralos, 1,700’, 26 October 1965, G. E. Ball, D. R. Whitehead (VMNH); and Lampazos de Naranjo, 10.0 km (6.0 mi) E Rancho Cerro Colorado, M, 24 January 1998, P. Sprouse (FSCA).

Remarks. *Minutissimiulus biramus* is the first “mainland” Mexican parajulid belonging to a predominantly US tribe. Its adults are the shortest/smallest mature parajulids we have seen.

Acknowledgments

We thank the following curators and collection managers for loaning or providing access to material from the indicated repositories: L. Prendini (AMNH), G. B. Edwards (FSCA), B. Brown (LACM), J. Coddington and D. DeRoche (NMNH), M. Kageyama (UCM), J. R. Reddell (UTIC), K. Ivanov (VMNH), and W. D. Sissom (WTAM). J. R. Reddell provided general locations for Texas caves. We are particularly grateful to C. T. McAllister and the late C. S. Crawford for recent samples of both species of *Gosiulus* and to K. Ivanov, E. C. Bernard, and P. E. Skelley for providing work space and laboratory facilities at the VMNH, Department of Entomology and Plant Pathology, University of Tennessee, and FSCA, respectively. RMS’ travel to the FSCA was supported in part by a grant from the Center for Systematic Entomology. S. I. Golovatch and M. F. Medrano conducted presubmission reviews, and the latter deduced locations for “Los Valles” and “Santa Fe Station.”
Literature Cited

Received July 21, 2016; Accepted August 29, 2016.

Review Editor Lawrence Hribar.
Figure 1. Known (solid lines) and projected (dashed lines) distribution of Gosiulini plotted against the maximal extent of the Western Inland Seaway in the Cretaceous Period, ca. 65–100 mya. The approximate distribution of Nesoressini (Shelley and Medrano 2006) is shaded in red.

Figures 2–5. *Gosiulus conformatus*, left anterior gonopods. 2) Holotype, anterior view. 3) The same, lateral view. 4) Male from Travis Co., anterior view. 5) The same, lateral view. at, anterior gonopod telopodite; lsp, lateral syncoxal process.
Figures 6–12. Gosiusius conformatus, left posterior gonopods (sub)medial views, all from Texas. 6) Lectotype, Live Oak Co. 7) Distal halves of prefemoral process and solenomere of paralectotype from McCulloch Co., lateral view. 8) Distal half of prefemoral process of male paralectotype from Jim Wells Co., lateral view. 9) Telopodital projections of male from Travis Co. 10) The same of male from Kerr Co. 11) The same of male from LaSalle Co. 12) The same of male from Lubbock Co. C, process "C"; pfp, prefemoral process; s, solenomere; sp, subbasal prefemoral spine.
Figures 14–21. Gosuilini gonopods. 14) Right anterior gonopod of the neotype of Gosuilus timpius (holotype of Z. navajo), anterior view. 15) The same, lateral view. 16) Right anterior gonopod of male of G. timpius from Culberson Co., Texas, anterior view. 17) Left posterior gonopod of neotype, lateral view. 18) The same, anterior view. 19) The same, medial view. 20) Right anterior gonopod of the holotype of Minutissimiulus biramus, anterior view. 21) Left posterior gonopod of the same, lateral view. cl, coxal lobe; other abbreviations as in Fig. 2–5, 6–12.