EFFECTO DEL NEMATODO AGALLADOR MELOIDOGYNE INCognita SOBRE EL CRECIMIENTO DEL GUAYABO (PSIDium SPP.) EN VIVERO

por

ANA M. CASASSA¹, R. CROZZOLI², J. MATHEUS³, VIVIAN BRAVO¹ y MERYLIN MARIN⁴

Resumen. Se realizó un ensayo en bolsas plásticas de 2 l y bajo umbráculo, para investigar la relación entre diferentes niveles poblacionales [0; 0,0625; 0,125; 0,25; 0,5; 1; 2; 4; 8; 16; 32 y 64 huevos + segundos estádios juveniles (J2)/cm³ de suelo] de Meloidogyne incognita raza 1 y el crecimiento de la selección Criolla Roja de Psidium guajava y de P. friedrichsthalianum. La única variable afectada por la acción del nematodo fue el peso aéreo seco. Los resultados demostraron que la selección de P. guajava fue susceptible a M. incognita, mientras que P. friedrichsthalianum fue poco afectada por el nematodo. Al introducir los datos en la curva de Seinhorst, se determinó que el límite de tolerancia (T) a la población de M. incognita evaluada fue de 0,05 y 3 huevos + J2/cm³ de suelo para P. guajava y P. friedrichsthalianum, respectivamente. El rendimiento mínimo (m) a elevadas poblaciones del nematodo fue de 0,71 y 0,85 para cada especie, respectivamente. Los valores de densidades poblacionales iniciales (Pi) y finales (Pf) fueron también introducidos en la ecuación de Seinhorst, estimando, para P. guajava, valores de 26,6 y 80 huevos + J2/cm³ de suelo como densidad de equilibrio y población potencial máxima, respectivamente y la tasa máxima de reproducción fue de 192 a Pi=0,25 huevos + J2/cm³ de suelo. En P. friedrichsthalianum el nematodo no se multiplicó. Los datos confirman la resistencia de P. friedrichsthalianum a la población de M. incognita evaluada.

Summary. Effect of the root-knot nematode, Meloidogyne incognita, on the growth of guava (Psidium spp.) in nurseries. Screenhouse experiments were conducted in 2 l plastic bags to investigate the relation between a range of population densities [0, 0,0625, 0,125, 0,25, 0,5, 1, 2, 4, 8, 16, 32 and 64 eggs and second stage juveniles (J2)/cm³ soil] of Meloidogyne incognita race 1 and growth of the selection Criolla Roja of Psidium guajava and P. friedrichsthalianum. Only top dry weight was affected by nematodes. The selection of P. guajava was susceptible to M. incognita while P. friedrichsthalianum was only slightly affected. Data fitted the Seinhorst’s curves. In Criolla Roja selection resulted a tolerance limit (T) of 0,05 eggs + J2/cm³ of soil; minimum relative yield (m) of 0.71, equilibrium densities and maximum potential nematode population were 26.6 and 80 eggs + J2/cm³ of soil respectively and, the maximum reproduction rates of M. incognita was 192 at Pi=0.25 eggs + J2/cm³ of soil. In P. friedrichsthalianum T and m were 3 eggs + J2/cm³ of soil and 0.85 respectively; the final population (Pf) were lower than initial population (Pi) at all inoculum levels. The data confirm the resistance of P. friedrichsthalianum to the population of M. incognita tested.
Los nematodos agalladores (*Meloidogyne* spp.) constituyen uno de los principales problemas en el cultivo del guayabo (*Psidium guajava* L.) en el municipio Mara del estado Zulia, Venezuela. En muchos huertos, las plantas presentan retrasos de crecimiento, clorosis, deficiencias nutricionales, defoliaciones y reducciones drásticas de rendimiento (Crozoli *et al.*, 1991). Recientemente se identificó como *Meloidogyne incognita* (Kofoid *et White*) Chitw. raza 1 como el nematodo causante de la problemática (Crozoli y Casassa, 1997).

Para el control de estos nematodos se han utilizado generalmente productos químicos; sin embargo, los resultados no han sido satisfactorios (Casassa *et al.*, 1996). Es así que la búsqueda de materiales resistentes constituye actualmente uno de los principales objetivos, pero, la mayoría de las selecciones provenientes de *P. guajava*, en Venezuela, son susceptibles a *Meloidogyne* spp. (Casassa *et al.*, 1996a), lo cual ocurre también en otras zonas productoras de guayaba a nivel mundial (González y Sourd, 1982; Babatola y Oyedunmade, 1992). Asimismo, *P. cattleyanum* Sabine, *P. molle* Bertol, *P. guayabita* A. Rich y *P. guineensis* Sw. son susceptibles a *Meloidogyne* spp. (Cuadra y Quincosa, 1982). La única especie que es señalada como resistente es *P. friedrichstbianum* (Berg.) Nied. (Fernández Diaz-Silveira, 1975; Cuadra y Quincosa, 1982); otros autores, sin embargo, la señalan como susceptible a *Meloidogyne* (González y Sourd, 1982).

Ante tales planteamientos, se realizó este ensayo con la finalidad de: 1) relacionar distintos niveles poblacionales de *M. incognita* raza 1 con algunos parámetros agronómicos, 2) determinar el límite de tolerancia al nematodo y 3) estudiar la dinámica del nematodo en la selección Criolla Roja de *P. guajava* y en *P. friedrichstbianum*.

Materiales y métodos

El ensayo se realizó en un umbráculo del vivero del Centro Frútico del Zulia-Corpozulia, ubicado en el municipio Mara del estado Zulia, Venezuela.

Las semillas de las dos especies de guayaba se sembraron en un semillero, compuesto por una mezcla de arena y abono orgánico en proporción 2:1 previamente desinfectada en autoclave. Un mes más tarde las plantas fueron trasplantadas a bolsas de polietileno negro que contenían 2 l del mismo suelo utilizado para el semillero.

Para inocular las plantas, 60 días después del trasplante, raíces de plantas de *P. guajava* creciendo en el huerto comercial del Centro Frutícola del Zulia-Corpozulia e infectadas con poblaciones de *M. incognita* raza 1 se lavaron, cortaron en pequeños trozos (0,5 cm) y se trituraron en licuadora por 2 min. La suspensión se pasó a través de los tamices N° 60 (250 μm), N° 100 (150 μm) y N° 500 (28 μm) con la finalidad de retener, en el último, juveniles de segundo estado (J2) y huevos del nematodo. La inoculación se realizó con una suspensión de J2 y huevos en contacto directo con las raíces de las plantas, en cuatro orificios realizados en el suelo alrededor del tallo, hasta una profundidad de 2 cm. Por cada especie se inocularon seis plantas con poblaciones iniciales (*Pi*) de 0; 0,0625; 0,125; 0,25; 1; 2; 4; 8; 16; 32 y 64 huevos y J2 del nematodo/cm³ de suelo. Las bolsas con los diferentes tratamientos fueron colocadas, en forma aleatoria, en umbráculo, sobre mesas. Las plantas se regaron periodicamente y se realizaron aplicaciones químicas del fertilizante Nitrofoska al suelo (3 g/l de agua).

Seis meses después se efectuaron las evaluaciones de altura de planta, número de hojas/planta, diámetro del tallo, peso aéreo fre-
sco y peso aéreo seco; para determinar este último, las plantas se colocaron en bolsas de papel en estufa a 80 ºC hasta que alcanzaron peso constante. Se determinó la población del nematodo, tanto en el suelo (J2) como en las raíces de las plantas (J2 + huevos); para ello, los nematodos se extrajeron de 100 cm³ de suelo provenientes de las bolsas individuales, el cual fue procesado en el levigador de Oostenbrink (s'Jacob y van Bezooijen, 1971) modificado por Crozzi a y Rivas (1987). La extracción de los nematodos en las raíces se realizó de la misma forma descrita en la preparación del inóculo, con la diferencia de que se licuó el total de las raíces de cada planta. Luego se determinó la tasa de reproducción de los nematodos (Pf/Pi).

Los datos de peso aéreo seco y las poblaciones iniciales fueron introducidos en la fórmula de Seinhorst (1965, 1986a)

\[y = m + (1-m)Z^{P-T} \]

(1)

donde \(y \) es la producción relativa (\(y = 1 \) por \(P < T \)); \(m \) es la producción mínima relativa y corresponde al valor de \(y \) cuando las poblaciones del nematodo son muy elevadas; \(P \) es la población de nematodos a la siembra expresada en hv o ejemplares/cm³ de suelo; \(T \) es el límite de tolerancia o población máxima que soporta una planta sin reducir su rendimiento (a poblaciones mayores la producción comienza a disminuir); \(Z \) es una constante menor a 1, generalmente \(Z^T \) es medianamente igual a 1,05.

Para comparar la variación poblacional del nematodo, los valores de las poblaciones que se inocularon a la siembra (Pi) y los correspondientes que se determinaron al final del ensayo (Pf) fueron introducidos en la ecuación de Seinhorst (1970, 1986)

\[Pf = axy (1-q^{Pf}) - e^{logq} + (1-x) Pi + sx (1-y) Pi \]

(2)

donde \(a \) es la tasa de reproducción máxima; \(x \) es la proporción de nematodos que pueden afectar a las plantas (estado infectivo y huevos que pueden eclosionar y es máximo igual a 1); \(y \) es la cantidad relativa de alimento disponible por los nematodos al nivel poblacional \(Pi \) (generalmente es igual a \(y \) de la primera ecuación); \(s \) es la proporción de J2 y huevos que no son afectados por las plantas y que se comportan como en ausencia de planta huésped. En esta ecuación \(axy (1-q^{Pf}) - e^{logq} \) representa la cantidad de nematodos proveniente de verdadera reproducción, mientras que la cantidad \(1-x Pi + sx (1-y) Pi \) es una proporción de los nematodos inoculados a la siembra (Pf), que no han sido afectados por el huésped y que pueden permanecer en el suelo hasta al final del ciclo.

Resultados y discusión

De todos los parámetros agronómicos evaluados, solamente en el peso aéreo seco se observaron diferencias entre los niveles de inóculo en ambas especies de Psidium. El efecto detrimonal causado por M. incognita raza 1, en esta variable, fue más evidente en P. guajava que en P. friedrichsthalianum; en esta última no se apreciaron notables diferencias entre las plantas inoculadas con las diferentes densidades poblacionales.

La interpolación de los datos con la ecuación (1) de Seinhorst (1965, 1986a) demuestra claramente que son bien representados por dicha ecuación, la cual permite determinar el límite de tolerancia (\(T \)) al nematodo, la pérdida máxima de rendimiento relativo (\(m \)), la relación entre niveles poblacionales de los nematodos en el suelo a la siembra y los parámetros agronómicos considerados, de manera adecuada. El límite de tolerancia (\(T \)), a la población de M. incognita evaluada, ha sido estimado en 0,05 y 3 huevos + J2/cm³ de suelo, mientras que el rendimiento mínimo relativo (\(m \)) de peso aéreo seco, fue de 0,71 y 0,85 para P. guajava y P. friedrichsthalianum, respectivamente (Fig. 1).

La relación entre niveles poblacionales iniciales (Pi) y finales (Pf) del nematodo es adecuadamente representada por la ecuación (2) de Seinhorst (1970, 1986), con valores promedio
de tasa de reproducción máxima de 192 a \(P_i=0,25 \) huevos + J2/cm\(^3\) de suelo, densidad de equilibrio de 26,6 huevos + J2/cm\(^3\) de suelo y un valor máximo de población que las plantas pueden soportar de 80 huevos + J2/cm\(^3\) de suelo para *P. guajava*. En *P. friedrichsthalianum*, *M. incognita* no se multiplicó y la máxima tasa de reproducción fue de 0,4 huevos + J2/cm\(^3\) de suelo a \(P_i=0,25 \) J2+hv/cm\(^3\) de suelo (Fig. 2).

Los resultados de este ensayo han permitido demostrar que el nivel de tolerancia de la selección Criolla Roja a la población de *M. incognita* evaluada es muy bajo, confirmando la susceptibilidad de la planta la cual permitió una abundante reproducción del nematodo, coincidiendo con otros investigadores (Cuadra y Quincosa, 1982; Babatola y Oyedunmade, 1992); sin embargo, las plantas no fueron tan afectadas por la acción del nematodo como es señalado en otros trabajos (Babatola y Oyedunmade, 1992). Asimismo, coincidiendo con los señalamientos realizados por Fernández Díaz-Silveira (1975) y Cuadra y Quincosa (1982), se pudo comprobar que *P. friedrichsthalianum* no permitió la reproducción del nematodo en ninguno de los niveles de inóculo utilizados, comportándose como una planta no huésped.

Esta especie de guayabo, al ser utilizada como patrón, puede ser muy eficaz en el control de este nematodo, especialmente si es incluida

Fig. 1 - Relación entre la población inicial \((P_i) \) de *Meloidogyne incognita* raza 1 y el peso aéreo seco relativo \((y) \) de *Psidium friedrichsthalianum* y *P. guajava*.
en un programa de manejo integrado de *M. incognita*. Sin embargo, es oportuno comprobar su respuesta hacia distintas especies y razas de nematodos agalladores presentes en Venezuela.

Agradecimientos. Los autores de este trabajo expresan su gratitud al CONICIT (Proyecto S1-2808), CONDES-LUZ (Proyecto N° 1037-94) y a CENFRUZU-CORPOZULIA, por el cofinanciamiento otorgado para la realización de esta investigación. Agradecemos el apoyo brindado por la Asociación de Fruticultores del municipio Mara y al Instituto di Nematologia Agraria del Consiglio Nazionale delle Ricerche (Bari, Italia), especialmente al Prof. Franco Lamberti y al Dr. Nicola Greco, por su asesoramiento y valiosa colaboración en la culminación de esta investigación.

Obras citadas

Aceptado para la publicación el 12 de agosto 1998.