ENTOMOPATHOGENIC NEMATODES (RHABDITIDA) IN THE MEDITERRANEAN REGION OF TURKEY

I. Kepenekci

Plant Protection Central Research Institute 06172, Yenimahalle-Ankara, Turkey

Summary. The presence of naturally occurring entomopathogenic nematodes was surveyed in the Mediterranean Region of Turkey. Fiftytwo soil samples were taken, using the Galleria larva bait technique. Three soil samples were found positive. One sample contained Steinernema carpocapsae (Rhabditida: Steinernematidae) and two samples contained Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae). Morphometric characteristics are given. S. carpocapsae is recorded for the first time in the nematofauna of Turkey.

The economic importance of entomopathogenic nematodes of the families Steinernematidae and Heterorhabditidae is increasing because of their potential use in the biological control of different insect species. (Kaya et al., 1993)

The first record of an entomopathogenic nematode in Turkey is that of Steinernema feltiae from Rize on the Black Sea coast (Özer et al., 1995). Then Heterorhabditis bacteriophora was found in a population of sting bug, Aelia rostrata (Heteroptera: Pentatomidae) (Kepenekci et al., 1999). H. marelatus occurred in the soil samples collected from different habitats of the Agriculture Faculty Campus of The Ankara University (Kepenekci and Susurluk, 2000).

The results of a survey carried out in Turkey are reported here.

MATERIALS AND METHODS

A total of 52 soil samples was collected from 15 locations of varied habitats (grass-land, woodland and cultivated land) in the Mediterranean region of Turkey (Fig. 1). At each sampling site five random subsamples of approximately 200 ml were collected to a depth of 10 cm over an area of 50 m². A representative sample of 250 ml was placed in a plastic box and five final instar larvae of Galleria mellonella L. (Lepidoptera: Galleriidae) were added. The boxes were incubated at 20-25 °C for five days. Then, dead larvae were transferred to a White trap (White, 1927) to extract the infective juveniles. All the samples were baited three times with Galleria to obtain the maximum number of positive soil samples. The infective juveniles collected ten days later were then checked for their pathogenicity to Galleria larvae.

Identification of nematodes to genus level was attempted by making temporary mounts of ten infective juveniles for each isolate. Infective juveniles were killed and fixed in 4% hot formaldehyde. Fixed nematodes were transferred to anhydrous glycerine by Seinhorst's (1959) rapid method as modified by De Grisse (1969). Permanent slides were prepared. All measurements were made using a drawing tube attached to the light microscope.

RESULTS AND DISCUSSION

Entomopathogenic nematodes were present in three samples. They were Heterorhabditis bacteriophora Poinar, 1976 (Rhabditida: Heterorhabditidae) in two samples and Steinernema carpocapsae (Weiser, 1965) Wouts, Maracek, Gerdin et Bedding, 1982 (Rhabditida: Steinernematidae). S. carpocapsae is recorded for the first time in the nematofauna of Turkey.

All the isolated populations multiplied on G. mellonella larvae confirming their entomopathogenic nature.

Morphometric characters of the populations are given in Table I. All specimens were characterized by body length less than 1 mm. In S. carpocapsae, mouth and anus were closed; pharynx and intestine were collapsed; the excretory pore was anterior to the nerve ring; symbiotic bacteria were present at the base of the pharyngeal bulb.

In H. bacteriophora the third stage infective juvenile was inside the second stage cuticle, which showed a number of longitudinal ridges; head possessed a small protection on dorsal side; the excretory pore was posterior to the nerve ring; cells of symbiotic bacteria were found in the lumen of the intestine.

Morphometric identification to species level was carried out on all of the populations by comparison with the revised descriptions of Poinar (1976; 1986).

* This research has been supported by Agricultural Research Foundation (TAP) with the project number TAGE/MB/96/17/01/003.
Fig. 1. Map of Turkey showing sampling sites in the Mediterranean Region.

All the entomopathogenic nematodes detected were in samples taken from woodlands.

Table I. Morphometrics of infective juveniles of populations of *Steinernema carpocapsae* and *Heterorhabditis bacteriophora* from Turkey.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total length</td>
<td>Anamur</td>
<td>543±7.46 (519-566)</td>
<td>552.7±9.1 (532-580)</td>
</tr>
<tr>
<td>Greatest width</td>
<td></td>
<td>23.3±0.35 (21.4-24.2)</td>
<td>24.4±1.1 (22.5-26.2)</td>
</tr>
<tr>
<td>Distance head to excretory pore</td>
<td></td>
<td>32.8±0.34 (31.6-33.5)</td>
<td>91.5±1.5 (88.6-94.5)</td>
</tr>
<tr>
<td>Distance head to nerve ring</td>
<td></td>
<td>73.7±1.6 (66.0-80.7)</td>
<td>84.4±7.4 (79.5-95.1)</td>
</tr>
<tr>
<td>Distance head to pharynx base</td>
<td></td>
<td>99.6±1.5 (93.0-104.2)</td>
<td>115.8±1.9 (110.0-122.6)</td>
</tr>
<tr>
<td>Tail length</td>
<td></td>
<td>50.9±0.94 (48.4-54.9)</td>
<td>92.5±3.2 (90.0-95.5)</td>
</tr>
<tr>
<td>Ratio a</td>
<td></td>
<td>23.4±0.26 (22.7-24.3)</td>
<td>34.2±2.1 (32.5-36.8)</td>
</tr>
<tr>
<td>Ratio b</td>
<td></td>
<td>5.4±0.05 (5.2-5.7)</td>
<td>5.0±0.02 (4.9-5.1)</td>
</tr>
<tr>
<td>Ratio c</td>
<td></td>
<td>10.6±0.12 (10.1-11.0)</td>
<td>6.7±0.8 (6.2-7.1)</td>
</tr>
<tr>
<td>Ratio d</td>
<td></td>
<td>0.32±0.007 (0.30-0.36)</td>
<td>0.88±0.04 (0.82-0.91)</td>
</tr>
<tr>
<td>Ratio e</td>
<td></td>
<td>0.64±0.0123 (0.60-0.69)</td>
<td>1.10±0.05 (1.05-1.18)</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td>20</td>
<td>25</td>
</tr>
</tbody>
</table>

All the measurements are in micrometres, range in brackets.

ACKNOWLEDGEMENT

Thanks to Prof. Dr. R. Gaugler, Rutgers University, New Brunswick, New Jersey, USA, who gave me the chance to study entomopathogenic nematodes in his laboratory and to Prof. Dr. K.B. Nguyen, University of Florida, Gainesville, Florida, USA for confirming my identification.
LITERATURE CITED

De Grisse A., 1969. Redescription et modifications de
quelques techniques utilisees dans l’etude des nematodes
phytoparasitaires. Mededelingen Faculteit Landbouwwetens-
schappen Rijksuniversiteit Gent, 34: 351-359.

overview of insect-parasitic nematodes. Pp. 1-10 In Bed-
ding, R., Akhurst, R. & Kaya, H.K. (Eds) Nematodes and
the biological control of insect pest. East Melbourne, Aus-
tralia, CSIRO Publications.

Türkiye için yeni bir Entomopatojen nematod Heterorhabdi-
tis bacteriophora Poinar 1976 (Rhabditida: Heterorhabdi-
tidae) [A new species of entomopathogenic nematode
from Turkey Heterorhabditis bacteriophora Poinar 1976
(Rhabditida: Heterorhabditidae)]. 4th. Proceeding of the
Biological Control Congress), 26-29 January 1999, Adana,
Turkey, pp. 587-596.

Entomopatojen nematod türü; Heterorhabditis marelatus
Lui and Berry, 1996 (Rhabditida: Heterorhabditidae) [A
new species of Entomopathogenic nematodes for Turkey
Heterorhabditis marelatus Lui and Berry, 1996 (Rhabdit-
tida: Heterorhabditidae)]. Tarım Bilimleri Dergisi (Journal
of Agricultural Sciences), 6: 59-64.

Özer N., Keskın N. and Kirba_ Z, 1995. Occurence of ento-
opathogenic nematodes (Steinernematidae: Heterorhab-

Poinar G.O. Jr., 1976. Description and biology of a new in-
sect parasitic rhabditoid, Heterorhabditis bacteriophora n.
gen. n. sp. (Rhabditida: Heterorhabditidae N. Fam.), Ne-
matologica, 21: 463-470.

Poinar G.O. Jr., 1986. Recognition of Neoaaclelana species
(Steinernematidae: Rhabditida). Proceedings of the
Helminthological Society of Washington, 53: 121-129.

Seinhorst J.W., 1959. A rapid method for the transfer of ne-
matodes from fixative to anhydrous glycerin. Nematologi-
ca, 4: 67-69.

White G.F., 1927. A method for obtaining infective nematode

Accepted for publication on 24 September 2001