FIRST REPORT OF ROOT-KNOT NEMATODES, MELOIDOGYNE ARENARIA AND M. HAPLA (NEMATA: MELOIDOGYNIDAE) FROM PEPINO IN TURKEY

F. Akyazi1,2, H. Han3,4, R. Cetintas5 and A.F. Felek2

1Department of Plant Protection, Agriculture Faculty, University of Ordu, 52200, Ordu, Turkey
2Division of Forest Insect Pests and Diseases, Korea Forest Research Institute, Seoul 130-712, Korea;
3Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA;
4Division of Forest Insect Pests and Diseases, Korea Forest Research Institute, Seoul 130-712, Korea;
5Department of Plant Protection, Agriculture Faculty, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey

Summary. A survey was conducted during 2010-2011 to investigate the root-knot nematode species occurring in pepino (Solanum muricatum Aiton) (Solanaceae) growing areas in Ordu and Samsun provinces, in the Black Sea Region of Turkey. A moderate to severe root-knot infection was observed. Microscopic examination of galled roots revealed the presence of mature females. Extracted females were identified to the species level based on available perineal patterns, morphology, esterase (Est) phenotypes in PAGE (Polyacrylamide Gel Electrophoresis) and the identification confirmed molecularly. The root-knot nematode from Ordu area was identified as Meloidogyne hapla by the exact size of 440 bp amplicons by JMV hapla scar primer. The other Meloidogyne species from Samsun area was identified as M. arenaria based on the size, 420 bp, amplified by M. arenaria SCAR primer. Meloidogyne arenaria and M. hapla are reported for the first time on pepino in Turkey.

Key words: Identification, Meloidogyne arenaria, M. hapla, Solanum muricatum.

Meloidogyne spp. (root-knot nematodes) are economically important plant parasites affecting a broad range of host plants. Solanaceae plants (tomato, potato, eggplant, pepper, etc.) are considered among the main hosts for root-knot nematodes. The genus Meloidogyne is able to infect more than 5,500 plant species (Trudgill et al., 2001). Meloidogyne arenaria (Neal) Chitw. have been reported from tomatoes, cucumbers and eggplants in Turkey (Özarslandan and Elekçioglu, 2010). Meloidogyne hapla has been reported in temperate climate areas of Central and Eastern Anatolia regions of Turkey (Yüksel, 1974; Elekçioglu and Uygun, 1994; Elekçioglu et al., 1994; Sogut and Elekçioglu, 2000). In Turkey, many hosts for M. arenaria and M. hapla have been recorded; however, infestation of pepino, Solanum muricatum Aiton (Solanaceae) by these nematode species has not yet been reported. In the world, however, M. incognita has been reported on pepino only in New Zealand (Knight et al., 1997). There is an increasing production and commercialization in European fruit markets of this crop in recent years (Martinez-Romero et al., 2003). Because of the increasing demand, several attempts have been made to introduce this crop into various regions having a Mediterranean climate (Prohens et al., 1996). Pepino is very new and not yet grown adequately on a commercial scale in Turkey. In recent years, it has been grown in some small-scale greenhouses in Mediterranean and Black Sea regions of the country. In September of 2010-2011, typical root-knot nematode symptoms, such as stunting and extensive root galls, were found on the roots of pepino plants in Ordu and Samsun provinces, Black Sea Region of Turkey. This was the first finding of root-knot nematode infection on pepino in Turkey. The objective of this study was to identify the Meloidogyne spp. found on pepino in Ordu and Samsun provinces of Turkey by morphological, biochemical and molecular methods.

MATERIAL AND METHODS

Nematode samples and preparation of perineal patterns. Plant samples were collected from two main pepino producing districts, Terme and Kayabaşı, of Samsun and Ordu provinces, respectively (Fig. 1). Root-knot nematode symptoms, such as stunting and extensive root galling were observed on roots of pepino plants (Fig. 2). Meloidogyne spp. females were dissected from the galls using a stereomicroscope (Leica, S8APO) at 40x magnification. Females were placed in a drop of 45% lactic acid and the perineal regions were cut and cleaned. Perineal patterns were prepared following the procedures suggested by Hartman and Sasser (1985). Morphological observations and photographs were completed within 24 hours following slide preparation with the help of a light microscope equipped with a digital camera (Leica, DM2500).

Electrophoresis, sample preparation, and loading. A Bio-Rad mini-PROTEAN II (Bio-Rad, Philadelphia, PA) electrophoresis unit was used. Before electrophoresis, the females were thawed and homogenized individually in micro-haematocrit plastic tubes in 10 ml of extraction buffer. Each sample was then loaded into a well. Each gel contained 10 wells. Standard M. javanica female extract was placed into wells 1 and 10. The remaining 8 wells

1 Corresponding author e-mail: farukakyazi@hotmail.com
were loaded with the protein extract from test sample females. Electrophoresis was conducted in a discontinuous buffer system with 8% acrylamide running gel, pH 8.8 and 4% acrylamide stacking gel, pH 6.8. The voltage was maintained at 80 volts for the first 16 minutes and increased to 200 volts for the remainder of the running period. Following electrophoresis, the gels were removed and placed in an enzyme reaction mixture to determine esterase patterns (Harris and Hopkinson, 1976). The malate dehydrogenase isozyme was also determined but, unfortunately, the data are not available.

DNA extraction and PCR-SCAR. Nematode DNA was extracted from each of the five female samples using the DNeasy Blood & Tissue kit (Qiagen, Maryland, USA). The final volume extracted from each sample was 30 µl in EB buffer.

Species-specific amplicons were obtained using a total of 25 µl of PCR reaction mixture with 2 units of Taq PCR Master Mix kit (Qiagen, Maryland, USA), 1.5 µl of 10 pM primers, 6.5 µl of PCR water (Sigma, St. Louis, MO, USA), and 2 µl of genomic DNA.

The multiplex SCAR primers for M. hapla were JMV1, 5’- GGATGGCCTGCTTTCAAC-3’, JMV2, 5’- TTTCCCTTATGATGTTTACCC-3’, and JMV hapla, 5’- AAAATCCCTCGAAAAATC CACC-3’ (Wishart et al., 2002). The primer sets for M. arenaria were Far, 5’- TCGCGATAGAGGTAAATGAC-3’ and Rar, 5’- TCGGGGATAGACACTACAAACT-3’ (Zijlstra et al., 2000). The PCR was successfully amplified by 45 cycles: denaturation for 30 seconds at 94 °C, annealing for 30 seconds at 50 °C for M. hapla, 61 °C for M. arenaria, extension for 1 minute at 72 °C, with initial denaturation for 15 minutes at 94 °C and final extension of 10 minutes at 72 °C. PCR was performed using PTC-100, Bio-Rad.

RESULTS AND DISCUSSION

Identification of Meloidogyne species is important to design effective nematode management practices such as crop rotation and plant resistance (Hussey, 1990; Zijlstra 2000; Zijlstra and Van Hoof, 2006). Based on morphological characters (Jepson, 1987; Karssen, 2002), esterase phenotypes and molecular analyses, the unknown Meloidogyne species were identified as M. arenaria and M. hapla. The perineal patterns of M. hapla were characterized by quite distinctive striae, which were broken, curved, twisted or curled around (Fig 3A). The vulva was sunken in an area variable in shape and devoid of striae. The perineal patterns of M. arenaria showed the characteristic low dorsal arch, which is indented near the lateral field and with irregular forks. Striae were smooth and slightly wavy (Fig. 4A). The morphology of the perineal patterns is considered the most important morphological character for species identification (Eisenback, 1985; Karssen and van Aelst, 2001).

An important tool that can be used for studying and diagnosing root-knot nematodes is the electrophoretic method (Esbenshade and Triantaphyllou, 1985). In this study, the esterase isozyme phenotype analysis of single young egg-laying females of M. hapla revealed a single esterase band (Fig. 3B). For M. arenaria, two distinct bands of esterase were observed as described by Esbenshade and Triantaphyllou (1985) (Fig. 4B). Esterases have been useful for differentiating the major Meloidogyne species (Esbenshade and Triantaphyllou, 1985; Cofcewicz et al., 2004).

The Meloidogyne species from Ordu province was identified as M. hapla by the exact size of 440 bp amplicons by JMV hapla scar primer (Fig. 3C). Alkan (1962), Yüksel (1974), Elekçiog˘lu and Uygun (1994), Elekçiog˘lu et al., (1994), Mennan and Ecevit (1996), Sög˘üt and Elekçiog˘lu (2000) reported that M. hapla is a rare species in Turkey, but Özarslan and et al. (2005) identified M. hapla on potato in Turkey. In addition, Diker (1999) observed the occurrence of this species in the Black Sea re-
The other Meloidogyne species from Samsun province was identified as *M. arenaria* based on the size of the fragment, 420 bp, amplified by *M. arenaria* SCAR primer (Fig. 4 C). The multiplex SCAR primers that we used have been useful to differentiate *M. chitwoodi*, *M. fallax*, and *M. hapla* by the amplified sizes of the frag-

Fig. 3. *Meloidogyne hapla* from pepino at Ordu. A, perineal pattern of a female; B, esterase phenotypes on polyacrylamide gel. Lanes 1-8, one egg laying female. Left and right lanes *M. javanica* as a control; C, PCR-SCAR amplification. Lanes 1-4: Five females of *Meloidogyne* sp. each from Ordu. Lane 5, *M. hapla* as a control. M: GelPilot 100 bp ladder for molecular marker (QIAGEN).

Fig. 4. *Meloidogyne arenaria* from pepino at Samsun. A, Perineal pattern of *M. arenaria* from pepino roots; B, Esterase phenotypes of the *M. arenaria* on polyacrylamide gel. Lanes 1-8, one egg laying female. Left and right lanes, *M. javanica* as a control; C, PCR-SCAR amplification of *M. arenaria* from Samsun. Lanes 1-3: Five females of *Meloidogyne* sp. each from Samsun. Lane 4: *M. arenaria* as a control. M: GelPilot 100 bp ladder for molecular marker (QIAGEN).
ments, 540 bp, 670, and 440 bp, respectively (Wishart et al., 2002). Cucumber and tomato (Devran and Söğüt, 2009), eggplant (Özarslandan and Elekçioglu, 2010), and parsley (Mennan et al., 2011) were previously recorded as hosts for M. arenaria in Turkey.

To the best of our knowledge, this is the first report of M. arenaria and M. bapla infecting pepino in Turkey.

ACKNOWLEDGEMENTS

We thank Mr. Ali Bulut and Mr. Sunay Çetinkaya, the owners of pepino fields, for providing the pepino and help during field surveys.

LITERATURE CITED

