EVALUACION DE GERMOPLASMA DE PIMENTON Y AJI PICANTE A MELOIDOGYNE INCognITA EN PANAMA

E. M. Candanedo, J. Pinochet, G. Aranda y B. Gray

Instituto de Investigación Agropecuaria de Panamá (IDIAP), Apartado 6-4391, El Dorado, Panamá; Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), Apartado 6-3786, El Dorado, Panamá; Instituto de Investigación Agropecuaria de Panamá (IDIAP), Apartado 6-4391, El Dorado, Panamá; y Facultad de Ciencias Agropecuarias, Universidad de Panamá, respectivamente.

Aceptado:

28.IX.1988

Accepted:

RESUMEN

Un total de 18 cultivares y líneas experimentales de pimentón (Capsicum annuum) y aji picante (C. Frutescens) procedentes de Costa Rica y Panamá fueron evaluados para determinar su reacción a Meloidogyne incognita. Muchos de los materiales evaluados poseen resistencia o tolerancia a la marchitez bacteriana causada por Pseudomonas solanacearum y Xanthomonas spp. Todos los materiales resultaron susceptibles al nematodo agallador. Los índices de agallamiento y las poblaciones finales fueron altas en la mayoría de los materiales evaluados. Sin embargo, las líneas experimentales P-63, P-66 y 10871 desarrollaron una masa radicular significativamente superior al resto, bastante ramificadas y con agallas pequeñas, sugiriendo que puedan ser tolerantes. Estos tres materiales requieren ser evaluados bajo condiciones de campo en suelos infestados con marchitez bacteriana.

Palabras claves: Capsicum annuum, C. frutescens, evaluación de germoplasma, Meloidogyne incognita, resistencia, tolerancia.

ABSTRACT

Eighteen cultivars and breeding lines of bell (Capsicum annuum) and chile (C. frutescens) peppers from Costa Rica and Panama were tested for their reaction to Meloidogyne incognita. Many of these materials already have resistance or tolerance to bacterial wilt caused by Pseudomonas solanacearum and Xanthomonas spp. All materials tested were susceptible to the root-knot nematode. Gall indices and final nematode populations were high in the majority of the cases. However, the breeding lines P-63, P-66, and 10871 developed a significantly larger root mass with extensive ramification and smaller galls than the rest, suggesting that these materials might be tolerant. Additional evaluation under field condition and in bacteria infested soil is required.

Key words: Capsicum annuum, C. frutescens, Meloidogyne incognita, resistance, screening, tolerance.
INTRODUCCION

El nematodo de las agallas, _Meloidogyne incognita_ (Kofoid y White) Chitwood, es uno de los patógenos importantes del pimentón, _Capsicum annuum_ L., y el ají picante _C. frutescens_ L., en Panamá. Los daños que causan en estos cultivos suelen ser moderados, aunque bajo condiciones de monocultivo, rotación con tomate u otros buenos hospederos, pueden alcanzar niveles críticos que resulten en pérdidas substanciales (1,4,13). Las principales medidas de combate son la aplicación de nematicidas, la rotación de cultivos y el uso de prácticas agronómicas, tales como la incorporación de enmiendas orgánicas. Otra alternativa que puede ser efectiva y económica, especialmente para el pequeño productor, es el uso de cultivares tolerantes o resistentes que aseguren buenos rendimientos en presencia del nematodo y disminuyan la frecuencia de aplicación de nematicidas.

La obtención o introducción de cultivares de pimentón y ají picante deben poseer alguna medida de tolerancia o en el mejor de los casos, resistencia a la marchitez bacteriana causada por _Pseudomonas solanacearum_ Smith y _Xanthomonas_ spp., considerada como la principal enfermedad que afecta al cultivo del pimentón en Panamá, siendo _Xanthomonas_ más común en pimentón y _P. solanacearum_ más frecuente y crítico en tomate (_Lycopersicon esculentum_ Mill.) (4,5). La selección de cultivares y líneas de tomate tolerantes al nematodo agallador y resistentes a la marchitez, causada por _P. solanacearum_, ha sido investigada en Panamá, con buenos resultados (3,11,12,14). No se tiene esta información para pimentón y ají picante, cultivos que en la actualidad ocupan alrededor de 900 ha.

El objetivo de este trabajo fue evaluar la respuesta de germoplasma de pimentón y ají picante a _Meloidogyne incognita_ en materiales que ya poseen resistencia o tolerancia a la marchitez bacteriana.

MATERIALES Y METODOS

Se recolectó una población de campo de _M. incognita_ proveniente de una parcela comercial de tomate industrial, ubicada en Guavas Arriba, Antón, en la provincia de Coclé. La población se incrementó en tomate, en invernadero, para su posterior inoculación a 18 cultivares y líneas experimentales de pimentón y ají picante, la mayoría procedentes de los programas de fitomejoramiento del Instituto de Investigación Agropecuaria de Panamá (IDIAP) y de la Unidad de Recursos Fitogenéticos del Centro Agronómico Tropical de Investigación y Enseñanza (CATIE).

El ensayo se llevó a cabo bajo condiciones de invernadero en Chichébre y Tocumen, Panamá. El trasplante se realizó en maceteros de 2 L de capacidad que contenían un suelo de textura franco arenosa
previamente esterilizado con bromuro de metilo. Las plantas fueron inoculadas 15 días después del trasplante con una suspensión pura de 5 000 huevos y segundos estadíos juveniles de *M. incognita* por planta. El diseño experimental utilizado fue de bloques completamente al azar con cinco repeticiones por tratamiento. El cultivar testigo fue 'Jubilo'. Los materiales fueron evaluados a los 60 días después de la inoculación. Los principales criterios de selección utilizados para determinar la respuesta de la planta fueron el índice de agallamiento, la población final de nematodos por planta (suelo y raíz), la tasa de multiplicación del nematodo (Pf/Pi) y el volumen de raíz por planta.

Los nematodos fueron extraídos del suelo por tamizado diferencial y flotación en solución azucarada (10). Se tomó una alícuota de 250 cm³ de una muestra homogenizada de barro que provenía del total del volumen del suelo de cada macetero. Los nematodos en la raíz fueron extraídos mediante la inmersión y agitación de la raíz durante cuatro minutos en una solución de hipoclorito de sodio comercial al 10%, para disolver las masas de huevo y liberar los huevos y segundos estadíos juveniles, que fueron concentrados usando tamices de 100, 200 y 500 mallas (aberturas de 0.150, 0.074 y 0.025 mm, respectivamente). El índice de agallamiento fue determinado usando la escala recomendada por el Proyecto Internacional *Meloidogyne* (2,15) 0 = 0 agallas, 1 = 1 a 2 agallas, 2 = 3 a 10 agallas, 3 = 11 a 30 agallas, 4 = 31 a 100 agallas y 5 más de 100. El volumen radicular fue calculado por el desplazamiento que produce la introducción del sistema radicular en un medio líquido expresado en cm³.

Durante el transcurso del ensayo las plantas fueron regadas diariamente y suplementadas con una solución nutritiva de Hoagland, una vez por semana.

RESULTADOS Y DISCUSION

Todos los materiales evaluados resultaron susceptibles a *M. incognita* (Cuadro 1). El índice de agallamiento fue alto, entre 3.2 y 5.0 indicando diferentes grados de susceptibilidad. La tasa de multiplicación del nematodo (Pf/Pi) también fue bastante variable oscilando entre 6.1 y 69.8. El tercer parámetro evaluado y tal vez el más útil para la interpretación de los resultados, fue la determinación volumen radicular que fluctuó de 4.2 a 20.8 g. Las líneas experimentales de pimentón P-63, P-66 y de ají picante 10871 desarrollaron una masa radicular significativamente superior al resto de los materiales, con abundante ramificación y agallas pequeñas que no superaron los 0.3 cm de diámetro, en contraste con la mayoría que presentaron numerosas agallas, siendo muchas de gran tamaño (hasta 1 cm) y con pocas raíces. En evaluaciones previas de 19 materiales de pimentón y ají picante a *M.
Cuadro 1. Respuesta de 18 cultivares y líneas experimentales de *Capsicum* spp. a *Meloidogyne incognita* 60 días después de la inoculación con 5 000 huevos y juveniles por planta.

<table>
<thead>
<tr>
<th>Cultivares y líneas experimentales</th>
<th>Índice de agallas</th>
<th>Pf/Pf*</th>
<th>Volumen de raíz (cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aragon 17245 (P)*</td>
<td>4.8 ab*</td>
<td>69.8 a</td>
<td>11.0 cdef</td>
</tr>
<tr>
<td>Paragon (P)</td>
<td>4.6 abc</td>
<td>65.1 ab</td>
<td>9.6 cdefg</td>
</tr>
<tr>
<td>10871 (AP)</td>
<td>5.0 a</td>
<td>58.6 abc</td>
<td>17.0 ab</td>
</tr>
<tr>
<td>P-63 (P)</td>
<td>5.0 a</td>
<td>39.3 abcd</td>
<td>16.4 ab</td>
</tr>
<tr>
<td>11795 (P)</td>
<td>4.5 abc</td>
<td>38.4 abcd</td>
<td>9.0 cdefg</td>
</tr>
<tr>
<td>Cholo Aragon (P)</td>
<td>4.0 bcd</td>
<td>33.2 abcd</td>
<td>9.6 cdefg</td>
</tr>
<tr>
<td>Amazonia (P)</td>
<td>4.6 abc</td>
<td>28.4 abcd</td>
<td>10.0 cdef</td>
</tr>
<tr>
<td>A-10 (P)</td>
<td>4.4 abc</td>
<td>28.0 abcd</td>
<td>7.6 defg</td>
</tr>
<tr>
<td>9781 (AP)</td>
<td>4.0 bcd</td>
<td>27.0 abcd</td>
<td>6.4 efgh</td>
</tr>
<tr>
<td>Jubilo (P)</td>
<td>4.2 abc</td>
<td>25.4 abcd</td>
<td>11.8 bcde</td>
</tr>
<tr>
<td>Pico Loro Original (P)</td>
<td>4.8 ab</td>
<td>25.0 abcd</td>
<td>9.8 cdefg</td>
</tr>
<tr>
<td>P-67 (P)</td>
<td>4.0 bcd</td>
<td>22.4 bcd</td>
<td>7.4 defg</td>
</tr>
<tr>
<td>MAN-04 (P)</td>
<td>3.2 d</td>
<td>20.4 bcd</td>
<td>4.2 g</td>
</tr>
<tr>
<td>IRAZU (P)</td>
<td>5.0 a</td>
<td>19.2 bcd</td>
<td>13.6 bc</td>
</tr>
<tr>
<td>P-66 (P)</td>
<td>4.6 abc</td>
<td>19.1 bcd</td>
<td>20.8 a</td>
</tr>
<tr>
<td>BG-110 (AP)</td>
<td>4.4 abc</td>
<td>14.0 cd</td>
<td>12.8 bcd</td>
</tr>
<tr>
<td>MAN-03 (P)</td>
<td>5.0 a</td>
<td>7.9 d</td>
<td>6.0 fg</td>
</tr>
<tr>
<td>MAN-05 (P)</td>
<td>3.8 cd</td>
<td>6.1 d</td>
<td>5.4 fg</td>
</tr>
</tbody>
</table>

*Pf/Pf = Tasa de multiplicación del nematodo.

P (P) = Pimentón (*C. annum*); (AP) = Aji picante (*C. frutescens*).

*Promedio de cinco repeticiones. Valores en una misma columna seguidas por una misma letra no difieren estadísticamente según la Prueba de Rango Múltiple de Duncan (*P* = 0.05).

incognita realizado también en Panamá, todo el material testado presentó esta condición (1).

La capacidad para desarrollar un sistema radicular abundante en presencia del nematodo también se reflejó en un mejor desarrollo de la planta, a pesar de que este parámetro no se midió, por tratarse de evaluaciones cortas de 60 días, pero que sugiere que podría tratarse de líneas con un buen nivel de tolerancia a *M. incognita*. Este criterio puede ser importante en la selección de germoplasma de pimentón debido a la dificultad que hay en encontrar resistencia al nematodo. Aparentemente, es menos problema la búsqueda de resistencia en aji picante (6-9).

Para efectos prácticos, la obtención de cultivares tolerantes o en el peor de los casos, menos susceptibles que las actualmente en uso, puede ser una alternativa efectiva para el pequeño y mediano agricultor. Además es importante destacar la necesidad de obtener cultivares con resistencia y/o tolerancia múltiple a varios patógenos, especialmente bacterias y virus, que suelen ser las principales limitantes para el cultivo del pimentón en Panamá (1).
Las líneas experimentales de pimentón P-63 y P-66 han demostrado además tener un buen nivel de resistencia a la marchitez bacteriana, razón por la cual es recomendable que se evalúen en una segunda fase bajo condiciones de campo en áreas infestadas por la bacteria y el nematodo y determinar si en realidad, se comportarían como tolerantes en términos de rendimiento.

LITERATURA CITADA

Recibido para publicar: 15.VII.1988

Received for publication: